Abstract

We have investigated the far-infrared (FIR) optical properties and population relaxation dynamics of carriers and excitons in 100-Å GaAs–AlGaAs multiple quantum wells by visible–FIR pump–probe spectroscopy. Our experimental setup is capable of resolving transient changes of the complete complex amplitude transmission coefficient Δt/t between 0.3 and 2.3 THz with high sensitivity (|Δt/t| ≥ 5 × 10−4) and picosecond time resolution. Using picosecond laser pumping pulses to create excitons, we measured the exciton lifetime of 250 ps by monitoring the resulting transient 1s–2p exciton absorption (2.0 THz) of a picosecond FIR probing pulse. When free carriers were excited above the quantum-well band edge, we observed not only the decay of the free-carrier population but also the growth of the 1s exciton population between 10 and 100 ps. The latter effect is attributed to the relaxation of free carriers into the lowest (1s) exciton level.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
    [Crossref]
  2. M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
    [Crossref] [PubMed]
  3. J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
    [Crossref]
  4. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal–semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
    [Crossref]
  5. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
    [Crossref]
  6. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
    [Crossref] [PubMed]
  7. N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992).
    [Crossref]
  8. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563 (1988).
    [Crossref]
  9. G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” in Semiconductors and Semimetals (Academic, New York, 1977), Vol. 12, p. 169.
    [Crossref]
  10. X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
    [Crossref]
  11. L. C. Andreani and A. Paquarello, “Accurate theory of excitons in GaAs–Ga1−x Alx As quantum wells,” Phys. Rev. B 42, 8928 (1990).
    [Crossref]
  12. D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
    [Crossref]
  13. D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
    [Crossref]
  14. Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
    [Crossref]
  15. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), p. 44.
  16. C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
    [Crossref]
  17. T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
    [Crossref]
  18. J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

1993 (1)

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

1992 (3)

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992).
[Crossref]

1991 (2)

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal–semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

1990 (6)

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

L. C. Andreani and A. Paquarello, “Accurate theory of excitons in GaAs–Ga1−x Alx As quantum wells,” Phys. Rev. B 42, 8928 (1990).
[Crossref]

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

1989 (1)

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

1988 (1)

1987 (1)

M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
[Crossref] [PubMed]

1985 (1)

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

Andreani, L. C.

L. C. Andreani and A. Paquarello, “Accurate theory of excitons in GaAs–Ga1−x Alx As quantum wells,” Phys. Rev. B 42, 8928 (1990).
[Crossref]

Auston, D. H.

M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
[Crossref] [PubMed]

Capasso, F.

M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
[Crossref] [PubMed]

Chemla, D. S.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Cunningham, J. E.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Damen, T. C.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Dawson, P.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Dimmock, J. O.

G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” in Semiconductors and Semimetals (Academic, New York, 1977), Vol. 12, p. 169.
[Crossref]

Dykaar, D. R.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Dynes, R. C.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Fattinger, Ch.

Federici, J. F.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Foxon, C. T.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Gerling, M.

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

Greene, B. I.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Grischkowsky, D.

N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal–semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

Harde, H.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

Heritage, J. P.

Hodge, C. C.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Honold, A.

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

Hvam, J. M.

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Kalt, H.

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal–semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

Kirschner, E. M.

Klingshirn, C.

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Kuhl, J.

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

Kuo, J. M.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Langbein, W.

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Liu, X.

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), p. 44.

Lyssenko, V. G.

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Masumoto, Y.

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

Matsuura, M.

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

Nilsson, S.

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

Nuss, M. C.

M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
[Crossref] [PubMed]

Oberhauser, D.

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Oberli, D. Y.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Okamoto, H.

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

Pantke, K. H.

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Paquarello, A.

L. C. Andreani and A. Paquarello, “Accurate theory of excitons in GaAs–Ga1−x Alx As quantum wells,” Phys. Rev. B 42, 8928 (1990).
[Crossref]

Philips, C. C.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Pistol, M.-E.

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

Saeta, P. N.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Samuelson, L.

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

Schultheis, L.

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

Shah, J.

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Sharifi, F.

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

Skolnick, M. S.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Smith, G. W.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Stillman, G. E.

G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” in Semiconductors and Semimetals (Academic, New York, 1977), Vol. 12, p. 169.
[Crossref]

Tarucha, S.

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

Tu, C. W.

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

van Exter, M.

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

Weimann, G.

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Weiner, A. M.

Whitehouse, C. R.

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

Wolfe, C. M.

G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” in Semiconductors and Semimetals (Academic, New York, 1977), Vol. 12, p. 169.
[Crossref]

Appl. Phys. Lett. (2)

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal–semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992).
[Crossref]

Festkörperprobleme (1)

J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, “Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/Alx Ga1−x As quantum wells,” Festkörperprobleme 29, 157 (1989).

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

J. Opt. Soc. Am. B (2)

Phys Rev. Lett. (1)

M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys Rev. Lett. 58, 2355 (1987).
[Crossref] [PubMed]

Phys. Rev. B (7)

J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Phys. Rev. B 46, 11153 (1992).
[Crossref]

X. Liu, L. Samuelson, M.-E. Pistol, M. Gerling, and S. Nilsson, “Donor states in GaAs under hydrostatic pressure,” Phys. Rev. B 42, 11791 (1990).
[Crossref]

L. C. Andreani and A. Paquarello, “Accurate theory of excitons in GaAs–Ga1−x Alx As quantum wells,” Phys. Rev. B 42, 8928 (1990).
[Crossref]

D. Oberhauser, K. H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Y. Masumoto, M. Matsuura, S. Tarucha, and H. Okamoto, “Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells,” Phys. Rev. B 32, 4275 (1985).
[Crossref]

C. C. Hodge, C. C. Philips, M. S. Skolnick, G. W. Smith, C. R. Whitehouse, P. Dawson, and C. T. Foxon, “Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices,” Phys. Rev. B 41, 12319 (1990).
[Crossref]

T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, “Dynamics of exciton formation and relaxation in GaAs quantum wells,” Phys. Rev. B 42, 7434 (1990).
[Crossref]

Phys. Rev. Lett. (1)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, “Coherent and incoherent exciton dynamics in Al1−y Gay As/GaAs multiple quantum wells,” Phys. Status Solidi B 173, 53 (1992).
[Crossref]

Other (2)

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), p. 44.

G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” in Semiconductors and Semimetals (Academic, New York, 1977), Vol. 12, p. 169.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Part of the experimental setup showing the FIR transmitter and receiver and the cryostat holding the sample that is embedded in a sandwich of quartz lenses. The pump beam is overlapped with the FIR beam.

Fig. 2
Fig. 2

Measurement of (a) the M scan and (b) the D scan and (c) their spectra (solid curve, M; dotted curve, D). The M scan represents the transmitted FIR electric field through the sample and the optics. The D scan represents the change of the M scan induced by the presence of the pump beam.

Fig. 3
Fig. 3

(a) Measured spectrum of the amplitude transmission change for a pump photon energy of 1.51 eV, which lies below the exciton transition. The transmission decrease at 1.1 THz is due to the FIR absorption by photoexcited donor-bound electrons and is found to be independent of the probe delay time. (b) Strength of the 1.1-THz peak in the measured transmission change as a function of the pump photon energy. Note that the maximum strength lies far below the exciton transition (1.554 eV) and even 20 meV below the band gap (1.519 eV) of the semi-insulating GaAs substrate.

Fig. 4
Fig. 4

(a) Measured spectra of the amplitude transmission change for a pump photon energy at the exciton transition and different probe delay times: −10 ps (dotted curve), +10 ps (solid curve), and +100 ps (dashed curve). For the −10-ps curve the probe pulse arrives at the sample 10 ps before the pump pulse. The 2-THz peak is due to absorption by the 1s–2p exciton transition. (b) Measured spectra of the phase change.

Fig. 5
Fig. 5

Measured pump-delay-dependent parts of the spectra of the amplitude transmission change for a pump photon energy at the exciton transition, a probe delay time of +10 ps, and different pump spectral widths: 4 meV (solid curve), 10 meV (dotted curve), and 20 meV (dashed curve). The low-frequency rise is due to free-carrier absorption, and the 2-THz peak is due to the absorption by excitons. The broadening of the exciton peak as the spectral width increases is probably due to exciton–electron interaction.

Fig. 6
Fig. 6

(a) Measured spectra of the amplitude transmission change for a pump photon energy above the band gap of the quantum well and for different probe delay times: −7 ps (dotted curve), +10 ps (solid curve), +50 ps (short-dashed curve), and +100 ps (long-dashed curve). Below 1 THz the population of free electrons is seen to decay, whereas near 2 THz the exciton population is increasing in time. (b) Pump-delay-dependent part at +10 ps (solid curve) and +100 ps (dashed curve), showing the increased width of the growing exciton absorption.

Metrics