Abstract

A highly efficient ultrafast optical Kerr shutter is studied with the use of newly synthesized organic low-molecular-weight compounds. A solution of 4-(N,N-diethylamino)-β-nitrostyrene gives a material response time of 4.0 ps. A 1-m-long and 4-μm-diameter-core fiber waveguide filled with the organic solution successfully reduces the gate power to less than 1 W. A group-delay analysis shows that picosecond switching operation is feasible with the solution fiber waveguide. The application of solid media for the purpose of faster switching operation is carried out with a solid block of 2,5-dichloro-terephthal-bis-(4-N,N-diethylaminoaniline) doped in poly(methyl methacrylate).

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [Crossref]
  2. B. P. Singh and P. N. Prasad, “Optical bistable behavior of a planar quasi-waveguide interferometer made with a conjugated organic polymer film,” J. Opt. Soc. Am. B 5, 453–456 (1988).
    [Crossref]
  3. J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
    [Crossref]
  4. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
    [Crossref]
  5. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [Crossref] [PubMed]
  6. N. Finlayson, B. K. Nayar, and N. J. Doran, “Switch inversion and polarization sensitivity of the nonlinear-optical loop mirror,” Opt. Lett. 17, 112–114 (1992).
    [Crossref] [PubMed]
  7. T. Morioka and M. Saruwatari, “All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers,” Opt. Eng. 29, 200–209 (1990).
    [Crossref]
  8. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
    [Crossref]
  9. H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
    [Crossref]
  10. E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
    [Crossref]
  11. B. I. Greene and R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
    [Crossref]
  12. W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
    [Crossref]
  13. J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
    [Crossref]
  14. H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
    [Crossref]
  15. H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
    [Crossref]
  16. T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
    [Crossref]
  17. T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
    [Crossref]
  18. K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
    [Crossref]
  19. H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
    [Crossref]
  20. H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
    [Crossref]
  21. D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
    [Crossref]
  22. T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
    [Crossref]
  23. T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).
  24. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
    [Crossref]
  25. P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
    [Crossref]
  26. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [Crossref] [PubMed]
  27. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
    [Crossref] [PubMed]
  28. T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
    [Crossref]
  29. Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
    [Crossref]
  30. D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
    [Crossref]
  31. A. Owyoung, “Absolute determination of the nonlinear susceptibility χ3 via two-beam nonlinear interferometry,” Opt. Commun. 16, 266–271 (1976).
    [Crossref]
  32. K. Kubodera and H. Kobayashi, “Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation,” Mol. Cryst. Liq. Cryst. 182A, 103–113 (1990).
  33. G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
    [Crossref]
  34. J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8, 2132–2147 (1991).
    [Crossref]
  35. M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
    [Crossref]

1993 (3)

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

1992 (5)

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

N. Finlayson, B. K. Nayar, and N. J. Doran, “Switch inversion and polarization sensitivity of the nonlinear-optical loop mirror,” Opt. Lett. 17, 112–114 (1992).
[Crossref] [PubMed]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

1991 (5)

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8, 2132–2147 (1991).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

1990 (7)

K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
[Crossref] [PubMed]

M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
[Crossref]

K. Kubodera and H. Kobayashi, “Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation,” Mol. Cryst. Liq. Cryst. 182A, 103–113 (1990).

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
[Crossref]

H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
[Crossref]

T. Morioka and M. Saruwatari, “All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers,” Opt. Eng. 29, 200–209 (1990).
[Crossref]

1989 (4)

H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
[Crossref]

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

1988 (2)

1987 (1)

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

1983 (2)

B. I. Greene and R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[Crossref]

G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
[Crossref]

1981 (1)

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

1976 (1)

A. Owyoung, “Absolute determination of the nonlinear susceptibility χ3 via two-beam nonlinear interferometry,” Opt. Commun. 16, 266–271 (1976).
[Crossref]

1975 (1)

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
[Crossref]

1973 (1)

J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
[Crossref]

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

1966 (1)

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Aitchison, J. S.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

Andrejco, M. J.

Ashitaka, H.

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

Asobe, M.

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

Baker, G. L.

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Buchalter, B.

G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
[Crossref]

Cai, Y. M.

Chang, T. Y.

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

Close, D. H.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Delong, K. W.

Doran, N. J.

Ducing, J.

J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
[Crossref]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

English, J. H.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Etemad, S.

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Farrow, R. C.

B. I. Greene and R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[Crossref]

Finlayson, N.

Garito, A. F.

Giuliano, C. R.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Gossard, A. C.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Greene, B. I.

B. I. Greene and R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[Crossref]

Hagen, D. J.

M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
[Crossref]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Hanzlik, C.

G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
[Crossref]

Heflin, J. R.

Hellwarth, R. W.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Hermann, J. P.

J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
[Crossref]

Hess, L. D.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Hiraga, H.

H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
[Crossref]

Horsthuis, W. H. G.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Houh, H. H.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Ippen, E. P.

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
[Crossref]

Ironside, C. N.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

Ishida, Y.

H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
[Crossref]

Jackel, J. L.

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Jewell, J. L.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Kaino, T.

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

Kalpouzos, C.

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
[Crossref]

H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
[Crossref]

Kenney-Wallace, G. A.

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Kim, D. Y.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
[Crossref]

K. Kubodera and H. Kobayashi, “Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation,” Mol. Cryst. Liq. Cryst. 182A, 103–113 (1990).

H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
[Crossref]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

K. Kubodera and H. Kobayashi, “Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation,” Mol. Cryst. Liq. Cryst. 182A, 103–113 (1990).

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
[Crossref]

H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
[Crossref]

Kurihara, T.

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

Lotshaw, W. T.

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Matsumoto, S.

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

McCall, S. L.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

McClung, F. J.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

McMorrow, D.

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Meredith, G. R.

G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
[Crossref]

Mizrahi, V.

Mogi, K.

Möhlmann, G. R.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Mori, Y.

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

Morioka, T.

T. Morioka and M. Saruwatari, “All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers,” Opt. Eng. 29, 200–209 (1990).
[Crossref]

Morita, K.

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

Naganuma, K.

Nayar, B. K.

Oba, N.

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

Otomo, A.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Owyoung, A.

A. Owyoung, “Absolute determination of the nonlinear susceptibility χ3 via two-beam nonlinear interferometry,” Opt. Commun. 16, 266–271 (1976).
[Crossref]

Prasad, P. N.

Ricard, D.

J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
[Crossref]

Saifi, M. A.

Saruwatari, M.

T. Morioka and M. Saruwatari, “All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers,” Opt. Eng. 29, 200–209 (1990).
[Crossref]

Schere, A.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Shank, C. V.

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
[Crossref]

Shelburne, J. A.

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Singh, B. P.

Stegeman, G.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Stegeman, G. I.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

Suehiro, T.

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

Sundheimer, M.

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

Tomaru, S.

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

Townsend, P. D.

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
[Crossref]

Villeneuve, A.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

Wagner, W. G.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

Whitaker, N. A.

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Wigley, P. G. J.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

Wood, D.

Yajima, T.

H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
[Crossref]

Yamada, H.

Yang, C. C.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

Yokoh, Y.

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

ACS Symp. Ser. (1)

T. Kaino, T. Kurihara, K. Kubodera, and H. Kanbara, “Third-order nonlinear optical properties of organic materials,” ACS Symp. Ser. 45, 704–721 (1991).
[Crossref]

Appl. Phys. Lett. (8)

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
[Crossref]

J. P. Hermann, D. Ricard, and J. Ducing, “Optical nonlinearities in conjugated systems: β-carotene,” Appl. Phys. Lett. 23, 178–180 (1973).
[Crossref]

J. L. Jewell, S. L. McCall, A. Schere, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett. 61, 147–149 (1992).
[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

H. Kanbara, M. Asobe, K. Kubodera, T. Kaino, and T. Kurihara, “All-optical picosecond switch using organic single-mode fiber waveguide,” Appl. Phys. Lett. 61, 2290–2292 (1992).
[Crossref]

D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Third order nonlinearity of 4-dialkylamino-4′-nitro-stilbene waveguides at 1319 nm,” Appl. Phys. Lett. 63, 290–292 (1993).
[Crossref]

P. D. Townsend, J. L. Jackel, G. L. Baker, J. A. Shelburne, and S. Etemad, “Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers,” Appl. Phys. Lett. 55, 1829–1831 (1989).
[Crossref]

Chem. Phys. Lett. (3)

T. Kurihara, H. Kobayashi, K. Kubodera, and T. Kaino, “χ(3) evaluation for the molecular crystals of 4-(N,N-diethylamino)-4′-nitrostilbene (DEANS),” Chem. Phys. Lett. 165, 171–174 (1990).
[Crossref]

B. I. Greene and R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[Crossref]

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, “The self-focusing of light of different polarizations,” IEEE J. Quantum Electron. QE-2, 553–557 (1966).
[Crossref]

IEEE Photon. Technol. Lett. (4)

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, and T. Kaino, “Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides,” IEEE Photon. Technol. Lett. 3, 795–797 (1991).
[Crossref]

H. Kanbara, H. Kobayashi, and K. Kubodera, “Optical Kerr shutter performance of a solution of organic nonlinear optical material,” IEEE Photon. Technol. Lett. 1, 149–151 (1989).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

H. Kobayashi, H. Kanbara, and K. Kubodera, “Optical gating performance using a semiconductor-doped glass etalon,” IEEE Photon. Technol. Lett. 2, 268–270 (1990).
[Crossref]

J. Appl. Phys. (2)

T. Kurihara, N. Oba, Y. Mori, S. Tomaru, and T. Kaino, “New symmetrical π-conjugated molecules having large third-order optical nonlinearities,” J. Appl. Phys. 70, 17–19 (1991).
[Crossref]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

J. Chem. Phys. (1)

G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third harmonic generation. I,” J. Chem. Phys. 78, 1533–1542 (1983).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Photopolym. Sci. Technol. (1)

K. Morita, T. Suehiro, Y. Yokoh, and H. Ashitaka, “The development of organic third-order nonlinear optical materials,” J. Photopolym. Sci. Technol. 6, 229–238 (1993).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Mori, T. Kurihara, T. Kaino, and S. Tomaru, “Molecular orbitals and third-harmonic generation for symmetrically substituted benzylidene aniline,” Jpn. J. Appl. Phys. 31, 896–900 (1992).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

K. Kubodera and H. Kobayashi, “Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation,” Mol. Cryst. Liq. Cryst. 182A, 103–113 (1990).

Opt. Commun. (3)

A. Owyoung, “Absolute determination of the nonlinear susceptibility χ3 via two-beam nonlinear interferometry,” Opt. Commun. 16, 266–271 (1976).
[Crossref]

T. Kurihara, H. Kanbara, H. Kobayashi, K. Kubodera, S. Matsumoto, and T. Kaino, “Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics,” Opt. Commun. 84, 149–154 (1991).
[Crossref]

H. Hiraga, Y. Ishida, and T. Yajima, “High-power tunable femtosecond laser system using high dispersion prism compressors,” Opt. Commun. 74, 323–326 (1990).
[Crossref]

Opt. Eng. (2)

T. Morioka and M. Saruwatari, “All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers,” Opt. Eng. 29, 200–209 (1990).
[Crossref]

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

Opt. Lett. (4)

Phys. Rev. Lett. (1)

M. Sheik-Bahae, D. J. Hagen, and E. W. Van Stryland, Phys. Rev. Lett. 64, 96–99 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Basic configuration of the optical Kerr shutter used in this study. The dichroic mirror in this setup is quite important in constructing the collinear configuration. LD, Laser diode.

Fig. 2
Fig. 2

Molecular structures of (a) DEANST and (b) DMSM. Both enhance the intramolecular charge-transfer effect by introducing a diethylamino or dimethylamino donor group and a nitro acceptor group.

Fig. 3
Fig. 3

Temporal profiles for (a) the gate light and (b) the output signal of the DEANST solution.

Fig. 4
Fig. 4

Probe transmittance T as a function of gate power P for the DEANST and DMSM solutions. The T values are proportional to P2. The 30-wt. % DEANST/nitrobenzene solution has the largest n2B value.

Fig. 5
Fig. 5

Structure of the capillary waveguide. The shaded area is the core filled with the DEANST solution.

Fig. 6
Fig. 6

Gate power Pπ/9 giving a phase shift Δϕ of π/9 as a function of the medium length L. In contrast to the cell configuration, the capillary configuration reduces the Pπ/9 value according to Pπ/9L−1.

Fig. 7
Fig. 7

Probe transmittance T as a function of the gate power P for capillaries with core diameters D of 30, 20, and 10 μm. The arrows indicate Pπ. The capillary having the much larger core diameter of 125 μm does not provide the λ/2 phase shift in the gate power range shown here. The 10-μm-core capillary gives Pπ = 10 W.

Fig. 8
Fig. 8

Dependence of Pπ on 1/D. The capillary waveguides with the smaller-diameter cores reduce Pπ in proportion to the core area.

Fig. 9
Fig. 9

Absorption loss spectrum for the DEANST/d-DMF solution. The deuterated solvent effectively avoids absorption loss in the near-infrared region.

Fig. 10
Fig. 10

Refractive index versus the DEANST concentration. The optimum single-mode range for the DEANST/d-DMF solution is indicated by the hatched area.

Fig. 11
Fig. 11

Probe transmittance T as a function of the gate power P. The arrow indicates Pπ, which is reduced to less than 1 W.

Fig. 12
Fig. 12

Dependence of the probe transmittance T on the beam polarization angle θ. The dots show the observed results. The solid curve represents the calculation.

Fig. 13
Fig. 13

Group-delay dispersion of the solution as a function of DEANST concentration near a wavelength of 1 μm. The arrow indicates the dispersion value for the 14.5-wt. % DEANST/d-DMF solution.

Fig. 14
Fig. 14

Molecular structures of the SBAC dyes. They are symmetrically designed for large nonlinearity.

Fig. 15
Fig. 15

Probe transmittance T as a function of the gate power P for a BB-SBAC block. The T values are proportional to P2, as one would expect from relation (4).

Fig. 16
Fig. 16

Dependence of the probe transmittance T on the beam polarization angle θ. The solid curve representing the calculation adequately coincides with the dots showing the observed results.

Tables (2)

Tables Icon

Table 1 n2B Values for the DEANST and DMSM Solutions Calculated from the Standard n2B,S Value for CS2 at a Wavelength of 0.69 μma

Tables Icon

Table 2 n2 Values for the SBAC Blocksa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T = T 0 sin 2 ( 2 θ ) sin 2 ( Δ ϕ 2 ) ,
Δ ϕ = 2 π n 2 B L eff I λ ,
L eff = 1 - exp ( - α L ) α ,
T n 2 B 2 L eff 2 ( P / D 2 ) 2 ,
P n 2 B - 1 L eff - 1 D 2 .
n 2 B = n 2 B , S L eff , S L eff [ ( T / T 0 ) ( T / T 0 ) S ] 1 / 2 ,
P π = π λ D 2 16 n 2 B L eff .
n 2 B = 1.2 × 10 - 14 cm 2 / W
n 2 ( Kerr ) = 9.1 × 10 - 15 cm 2 / W ,
n 2 ( THG ) = 2.0 × 10 - 14 cm 2 / W
n 2 ( Kerr ) / n 2 ( THG ) = 0.46

Metrics