Abstract

A surface plasmon-polariton (SPP) polarizer with a shorter polarizer length can be realized by strong coupling of a metal film to a core, that is, by matching of the phase constant of the SPP wave in the metal film to that of the guided mode in the core and by selection of a suitably thin buffer-layer thickness. To calculate the polarizer’s extinction ratio accurately, we have considered three TM supermodes of a SPP polarizer with a symmetric seven-layered slab structure rather than only a fundamental supermode that matches an input field well for large buffer thicknesses. When the buffer layer becomes thinner, the characteristics of the SPP polarizer cannot be simply estimated when only the propagation constant of the fundamental supermode is known, since its field distribution becomes quite different from that of the input field. It is shown that the field distribution beats in the SPP polarizer because of the interference effect of these supermodes. Finally, the total extinction ratio and insertion loss, including coupling losses at input and output ends, are estimated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, see T. Takano and J. Hamasaki, “Propagating modes of a metal-clad dielectric slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
    [CrossRef]
  2. T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.
  3. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
    [CrossRef]
  4. M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photonics Technol. Lett. 2, 253–256 (1990).
    [CrossRef]
  5. M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin chromium films,” IEEE Photonics Technol. Lett. 2, 597–599 (1990).
    [CrossRef]
  6. V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).
  7. K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
    [CrossRef] [PubMed]
  8. S. C. Lee and J. I. Chen, “New metal-clad fiber polarizer,” Appl. Opt. 29, 2667–2668 (1990).
    [CrossRef] [PubMed]
  9. V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. A 9, 953–956 (1992).
    [CrossRef]
  10. K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
    [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  12. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]

1992 (1)

1990 (6)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photonics Technol. Lett. 2, 253–256 (1990).
[CrossRef]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin chromium films,” IEEE Photonics Technol. Lett. 2, 597–599 (1990).
[CrossRef]

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
[CrossRef] [PubMed]

S. C. Lee and J. I. Chen, “New metal-clad fiber polarizer,” Appl. Opt. 29, 2667–2668 (1990).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1984 (1)

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

1972 (1)

For example, see T. Takano and J. Hamasaki, “Propagating modes of a metal-clad dielectric slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Arikawa, T.

T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.

Baba, K.

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Chen, J. I.

Culshaw, B.

K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
[CrossRef] [PubMed]

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Diggavi, S.

Gelikonov, V. M.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Ghatak, A. K.

Gupta, V. L.

Gusovskii, D. D.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Hamasaki, J.

For example, see T. Takano and J. Hamasaki, “Propagating modes of a metal-clad dielectric slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Hanaizumi, O.

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Himeno, K.

T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
[CrossRef] [PubMed]

Kawakami, S.

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

Konoplev, Y. N.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Lee, S. C.

Leonov, V. I.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Mamaev, Y. A.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Sharma, E. K.

Shiraishi, K.

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Stewart, G.

K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
[CrossRef] [PubMed]

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Suzuki, F.

T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.

Takano, T.

For example, see T. Takano and J. Hamasaki, “Propagating modes of a metal-clad dielectric slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Thyagarajan, K.

Turkin, A. A.

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Yamanouchi, R.

T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.

Zervas, M. N.

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photonics Technol. Lett. 2, 253–256 (1990).
[CrossRef]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin chromium films,” IEEE Photonics Technol. Lett. 2, 597–599 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Baba, K. Shiraishi, O. Hanaizumi, and S. Kawakami, “Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion,” Appl. Phys. Lett. 45, 815–817 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

For example, see T. Takano and J. Hamasaki, “Propagating modes of a metal-clad dielectric slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photonics Technol. Lett. 2, 253–256 (1990).
[CrossRef]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin chromium films,” IEEE Photonics Technol. Lett. 2, 597–599 (1990).
[CrossRef]

J. Lightwave Technol. (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Kvantovaya Electron. (Moscow) (1)

V. M. Gelikonov, D. D. Gusovskii, Y. N. Konoplev, V. I. Leonov, Y. A. Mamaev, and A. A. Turkin, “Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer,” Kvantovaya Electron. (Moscow) 17, 87–89 (1990).

Opt. Lett. (1)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

T. Arikawa, K. Himeno, F. Suzuki, and R. Yamanouchi, “Polished-type polarizer with polarization-maintaining optical fiber,” presented at the National Convention, Institute of Electronics, Information and Communication Engineers, Tokyo, March 1990, paper C-289.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic structure of SPP polarizers.

Fig. 2
Fig. 2

Refractive-index profile of a symmetric SPP polarizer.

Fig. 3
Fig. 3

Schematic field distributions of SPP modes guided along an asymmetric three-layered slab structure whose core is a thin metal film.3,12

Fig. 4
Fig. 4

Effective indices Re βm/k0 of each SPP mode as a function of the thickness of Al layer d at the wavelength of 633 nm for nc = 1.469 and nb = 1.473.

Fig. 5
Fig. 5

Field distributions |ϕ|exp() of (a) the TMg, (b) TMs, (c) lowest TMc, and (d) TEg supermodes of the SPP polarizer with 5-μm-thick buffer layers.

Fig. 6
Fig. 6

Field distributions |ϕ|exp() of (a) the TMg and the TMs supermodes and (b) the TEg supermode of the SPP polarizer with 3-μm-thick buffer layers.

Fig. 7
Fig. 7

(a) Attenuation and (b) mode index Re β/k0 of the TMg, TMs, lowest TMc, and TEg supermodes as a function of the thickness of the buffer layers Tb.

Fig. 8
Fig. 8

Guiding structure of the SPP polarizer.

Fig. 9
Fig. 9

Calculated amplitude distribution (solid curves) and that of incident modes (nearly hidden dashed curves) at the input end of the SPP polarizer with 3-μm-thick buffer layers for (a) the TM and (b) the TE waves.

Fig. 10
Fig. 10

Field distribution of the incident TM wave in the SPP polarizer as a function of position z.

Fig. 11
Fig. 11

Extinction ratios of the SPP polarizers with 3- or 5-μm-thick buffer layers as a function of polarizer length L. Solid curves and dotted lines represent the result calculated from Eq. (12) and that obtained conventionally from the modal attenuation constants, respectively.

Fig. 12
Fig. 12

Tolerance of the SPP polarizers for various structural parameters: the extinction ratio of the SPP polarizer with 3-μm-thick buffer layers as a function of L when (a) nc and (b) d are different from the matching point (d = 10 nm and nc = 1.4694) and (c) polarizer length L30dB required for an extinction ratio of 30 dB.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ϕ = { C g cos ( u g T x ) 0 x T C b + exp ( w b T x ) + C b - exp ( - w b T x ) T x T + T b C m + exp ( w m T x ) + C m - exp ( - w m T x ) T + T b x T + T b + d C c exp ( - w c T x ) T + T b + d x ,
Φ i = n A n i ϕ n ,
- + ϕ n K i ϕ m d x = 0             ( m n ) ,
A n i = - + Φ i ϕ n K i d x / - + ϕ n 2 K i d x ,
K i = { n i ( x ) 2 for the TM wave 1 for the TE wave
A n o = - + ϕ n Φ o K o d x / - + Φ o 2 K o d x ,
K o = { n o ( x ) 2 for the TM wave 1 for the TE wave
A g i = 0.74 + j 0.53 ,             A s i = 0.67 - j 0.45 , A c i = - 1.2 × 10 - 2 - j 1.4 × 10 - 4             for the TM mode ;
A g i = 0.999 + j 3.0 × 10 - 5             for the TE mode .
A g i = 1.0 - j 8.6 + 10 - 5 ,             A s i = - 0.2 + j 4.3 × 10 - 3 , A c i = - 3.0 × 10 - 3 - j 2.1 × 10 - 5             for the TM mode ;
A g i = 0.99996 + j 2.4 × 10 - 6             for the TE mode .
| B 2 n A n i exp ( - j β n L ) A n o | 2             ( n = g , s , c , )

Metrics