Abstract

A picosecond, widely tunable, optical parametric generator–amplifier system can be constructed with barium borate and lithium triborate crystals pumped by third- or second-harmonic output of an active–passive mode-locked Nd:YAG laser. A tunable output of several hundred mirojoules per pulse with a conversion efficiency as high as 30% has been obtained. The tuning range covers from 0.4 to 2.0 or from 0.6 to 2.5 μm and can be extended by sum- and difference-frequency generation to near 0.2 μm in the UV and to near 8 μm in the IR. The output linewidth can be narrowed to near the transform limit with the help of frequency selection by a grating.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
    [CrossRef]
  2. C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).
  3. S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
    [CrossRef]
  4. J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
    [CrossRef]
  5. Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
    [CrossRef]
  6. L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 53, 175 (1988); W. R. Bosenberg, L. K. Cheng, C. L. Tang, Appl. Phys. Lett. 54, 13 (1989); W. R. Bosenberg, W. S. Pelouch, C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
    [CrossRef]
  7. S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
    [CrossRef]
  8. J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
    [CrossRef]
  9. H. Komine, Opt. Lett. 13, 643 (1988); H. Vanherzeele, C. Chen, Appl. Opt. 27, 2634 (1988); M. Ebrahimzadeh, M. H. Dunn, F. Akerboom, Opt. Lett. 14, 560 (1989); U. Sukowski, A. Seilmeier, Appl. Phys. B 50, 541 (1990); G. C. Bhar, U. Chatterjee, S. Das, Appl. Phys. Lett. 58, 231 (1991); X. D. Zhu, L. Deng, Appl. Phys. Lett. 61, 1490 (1992); R. Danielius, A. Piskarskas, D. Podenas, P. Di. Trapani, A. Varanaricius, G. P. Banfi, Opt. Commun. 87, 123 (1992); F. Huang, L. Huang, Appl. Phys. Lett. 61, 1769 (1992).
    [CrossRef] [PubMed]
  10. J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  12. S. E. Harris, Proc. IEEE 57, 2096 (1969).
    [CrossRef]
  13. See, for example, R. L. Byer, in Treatise in Quantum Electronics, Vol. 1 of Nonlinear Optics, Parts A and B, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), p. 587.
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  15. R. A. Baumgartner, R. L. Byer, IEEE J. Quantum Electronics QE-15, 432 (1979).
    [CrossRef]
  16. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer-Verlag, Berlin, 1991), Chap. 2.
  17. D. A. Kleinman, Phys. Rev. 174, 1027 (1968).
    [CrossRef]
  18. B. Schroder, Opt. Quantum Electron. 15, 57 (1983).
    [CrossRef]
  19. A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
    [CrossRef]
  20. H.-J. Krause, W. Daum, Appl. Phys. Lett. 60, 2180 (1992).
    [CrossRef]
  21. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
    [CrossRef]
  22. T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
    [CrossRef]
  23. D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
    [CrossRef]

1992 (1)

H.-J. Krause, W. Daum, Appl. Phys. Lett. 60, 2180 (1992).
[CrossRef]

1991 (2)

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

1990 (2)

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

1989 (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

1988 (2)

1985 (1)

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

1984 (2)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

1983 (1)

B. Schroder, Opt. Quantum Electron. 15, 57 (1983).
[CrossRef]

1979 (1)

R. A. Baumgartner, R. L. Byer, IEEE J. Quantum Electronics QE-15, 432 (1979).
[CrossRef]

1974 (1)

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

1973 (1)

D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
[CrossRef]

1969 (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

1968 (1)

D. A. Kleinman, Phys. Rev. 174, 1027 (1968).
[CrossRef]

1965 (1)

J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner, R. L. Byer, IEEE J. Quantum Electronics QE-15, 432 (1979).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bosenberg, W. R.

L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 53, 175 (1988); W. R. Bosenberg, L. K. Cheng, C. L. Tang, Appl. Phys. Lett. 54, 13 (1989); W. R. Bosenberg, W. S. Pelouch, C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

R. A. Baumgartner, R. L. Byer, IEEE J. Quantum Electronics QE-15, 432 (1979).
[CrossRef]

See, for example, R. L. Byer, in Treatise in Quantum Electronics, Vol. 1 of Nonlinear Optics, Parts A and B, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), p. 587.

Chen, C.

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

Cheng, L. K.

L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 53, 175 (1988); W. R. Bosenberg, L. K. Cheng, C. L. Tang, Appl. Phys. Lett. 54, 13 (1989); W. R. Bosenberg, W. S. Pelouch, C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Daum, W.

H.-J. Krause, W. Daum, Appl. Phys. Lett. 60, 2180 (1992).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer-Verlag, Berlin, 1991), Chap. 2.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Elsaesser, T.

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Grandt, G.

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Greiter, L.

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer-Verlag, Berlin, 1991), Chap. 2.

Hanna, D. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
[CrossRef]

Harris, S. E.

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Huang, J. Y.

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

Jiang, A.

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

Jiang, A. D.

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

Kaiser, W.

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

Kleinman, D. A.

D. A. Kleinman, Phys. Rev. 174, 1027 (1968).
[CrossRef]

Koidl, P.

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Komine, H.

Krause, H.-J.

H.-J. Krause, W. Daum, Appl. Phys. Lett. 60, 2180 (1992).
[CrossRef]

Krauser, W.

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Laubereau, A.

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

Lin, S.

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

Ling, J.

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

Miller, R. C.

J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer-Verlag, Berlin, 1991), Chap. 2.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Rampal, V. V.

D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
[CrossRef]

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Schroder, B.

B. Schroder, Opt. Quantum Electron. 15, 57 (1983).
[CrossRef]

Seilmeier, A.

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Shen, Y. R.

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Smith, R. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
[CrossRef]

Sun, Z.

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

Tang, C. L.

L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 53, 175 (1988); W. R. Bosenberg, L. K. Cheng, C. L. Tang, Appl. Phys. Lett. 54, 13 (1989); W. R. Bosenberg, W. S. Pelouch, C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Wu, B.

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

You, G.

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

Zhang, J. Y.

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

Zhou, H. T.

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

Appl. Phys. Lett. (8)

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 57, 1961 (1990); J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 213 (1991).
[CrossRef]

L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 53, 175 (1988); W. R. Bosenberg, L. K. Cheng, C. L. Tang, Appl. Phys. Lett. 54, 13 (1989); W. R. Bosenberg, W. S. Pelouch, C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

S. Lin, J. Y. Huang, J. Ling, C. Chen, Y. R. Shen, Appl. Phys. Lett. 59, 2805 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974); A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

H.-J. Krause, W. Daum, Appl. Phys. Lett. 60, 2180 (1992).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 44, 313 (1984); R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterourtz, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

T. Elsaesser, A. Seilmeier, W. Krauser, P. Koidl, G. Grandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. 25, 1196 (1989); Y. X. Fan, R. C. Eckardt, R. L. Byer, Appl. Phys. Lett. 53, 2014 (1988).
[CrossRef]

IEEE J. Quantum Electronics (1)

R. A. Baumgartner, R. L. Byer, IEEE J. Quantum Electronics QE-15, 432 (1979).
[CrossRef]

J. Appl. Phys. (1)

S. Lin, Z. Sun, B. Wu, C. Chen, J. Appl. Phys. 67, 634 (1990).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, V. V. Rampal, R. C. Smith, Opt. Commun. 8, 151 (1973); R. J. Seymour, F. Zernike, Appl. Phys. Lett. 29, 705 (1976); K. G. Spears, X. Zhu, X. Yang, L. Wang, Opt. Commun. 66, 167 (1988); T. Elsaesser, H. Lobentanzer, A. Seilmeier, Opt. Commun. 52, 355 (1985).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

B. Schroder, Opt. Quantum Electron. 15, 57 (1983).
[CrossRef]

Phys. Rev. (2)

D. A. Kleinman, Phys. Rev. 174, 1027 (1968).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Proc. IEEE (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Sci. Sin. B (1)

C. Chen, B. Wu, G. You, A. Jiang, Sci. Sin. B 28, 235 (1985); C. Chen, Y. X. Fan, R. C. Eckardt, R. L. Byer, in Liquid Crystals and Spatial Light Modulator Materials, W. A. Penn, ed., Proc. Soc. Photo-Opt. Instrum. Eng.684, 12 (1987); C. Chen, Laser Focus World 25 (11), 129 (1989).

Other (4)

J. Y. Zhang, H. T. Zhou, J. Y. Huang, Y. R. Shen, C. Chen, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 18 of 1992 OSA Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD-3.

See, for example, R. L. Byer, in Treatise in Quantum Electronics, Vol. 1 of Nonlinear Optics, Parts A and B, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), p. 587.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer-Verlag, Berlin, 1991), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental arrangement of a BBO OPG–OPA system pumped at 355 nm without a grating as the dispersive device. One mirror (M in the dashed box at right) can be replaced by a grating. NC’s, nonlinear crystals; DM’s dichroic mirrors; PB, Pellin–Broca.

Fig. 2
Fig. 2

Signal (idler) wavelength of a type-I BBO parametric amplifier as a function of the crystal orientation (internal angle between the surface normal and the optical axis of the crystal). The pump beam is at 355 nm. The squares are the experimental data, and the dashed curve is from the phase-matching calculation. The discrepancy between theory and experiment is due to the inaccuracy of the refractive indices used in the calculation.

Fig. 3
Fig. 3

Angular tuning of the output wavelength of a type-I LBO parametric amplifier with the pump beam at 355 nm. The squares and the circles are the experimental data from the signal and the idler waves, and the solid curve is from the phase-matching calculation.

Fig. 4
Fig. 4

Signal (idler) wavelength of a type-I LBO optical parametric amplifier (eo + o) as a function of (a) the crystal orientation (internal angle between the surface normal and the optical X axis of the crystal) and (b) the crystal temperature. The pump beam is at 532 nm. The squares are the experimental data, and the dashed curves are from the phase-matching calculation (see Sellmeier equation given in Refs. 7 and 8). The dotted curve in (a) is calculated from the Sellmeier equation given in Ref. 22. The solid curve is calculated from the Sellmeier equation given in Ref. 8.

Fig. 5
Fig. 5

Output energy versus injected energy for a BBO optical parametric amplifier. The pump energy is 2.4 mm at 355 nm with a 15-ps pulse width, focused to a 2.7-mm beam spot. Triangles, squares, and crosses refer to output wavelengths at 460, 570, and 650 nm, respectively.

Fig. 6
Fig. 6

Schematic of the experimental arrangement of a BBO OPG system pumped at 532 nm with a grating for bandwidth reduction, together with a AgGaS2 DPG system that extends the output of the optical parametric generator to the mid-IR.

Fig. 7
Fig. 7

FWHM bandwidth of the signal wave from a BBO OPG–OPA system as a function of the pump intensity. The pump beam is at 532 nm. The solid line shows the transform-limited bandwidth.

Fig. 8
Fig. 8

Signal output energy versus pump intensity for a type-I BBO OPG–OPA system pumped at 532 nm. The signal wavelength is 808.8 nm.

Fig. 9
Fig. 9

FWHM bandwidth of the signal wave from the narrowband BBO OPG–OPA system as a function of the signal wavelength. The pump beam is at 532 nm with an intensity of 1.5 GW/cm2.

Fig. 10
Fig. 10

Idler pulse energy of a type-I AgGaS2 difference-frequency generator versus the idler wavelength. The DFG results from mixing of the fundamental output of the Nd:YAG laser at 1.064 μm with the idler output from the 532-nm pumped BBO OPG–OPA. The 1.064-μm pump beam has an intensity of 300 MW/cm2 (3 mJ in a 6-mm spot). The squares are the experimental data, and the solid curve is theoretical, from Eq. (1), for a 10-mm single crystal of AgGaS2 with a nonlinearity of d36 = 14 pm/V. The Fresnel loss of the crystal surfaces has been taken into account in the calculation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z ) = I 3 ( 0 ) [ 1 sn 2 ( z / ξ , γ ) ] ω 1 / ω 3 , I 2 ( z ) = I 2 ( 0 ) + I 3 ( 0 ) [ 1 sn 2 ( z / ξ , γ ) ] ω 2 / ω 3 , I 3 ( z ) = I 3 ( 0 ) sn 2 ( z / ξ , γ ) ,
Δ ν = c [ ( 2 ln 2 ) ( 2 Γ 0 L ) ] 1 / 2 ( 2 π L | n 2 n 1 | ) ,

Metrics