Abstract

A fully integrated system based on optical frequency generation is described. Pumped by the outputs of a single-frequency Nd:YAG laser, the system generates continuously tunable single-frequency radiation over the range of 0.6–18 μm. The system comprises several conversion stages that are coupled to one another by means of computer-controlled actuators, permitting automated tuning and single-frequency scanning ranges (without mode hops) of >100 cm−1.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an extensive list of references on optical parametric oscillators see V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer, New York, 1991), Vol. 64, pp. 181.
  2. W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
    [Crossref]
  3. T. D. Raymond, P. Esherick, and A. V. Smith, Opt. Lett. 14, 1116 (1989).
    [Crossref] [PubMed]
  4. D. Rakestraw, Combustion Research Facility, Sandia National Laboratories, Livermore, Calif. 94550 (personal communication, 1992).
  5. D. R. Guyer and D. D. Lowenthal, Proc. Soc. Photo-opt. Instrum. Eng. 1220, 41 (1990).
  6. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 686.
  7. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
    [Crossref]
  8. The temporal jitter is measured relative to the pump pulse.
  9. H. Kildal and J. C. Mikkelsen, Opt. Commun. 9, 315 (1973).
    [Crossref]
  10. B. C. Ziegler and K. L. Schepler, Appl. Opt. 30, 5077 (1991).
    [Crossref] [PubMed]
  11. This absorption spectrum was measured by D. Rakestraw, of Sandia National Laboratories, Livermore, Calif. 94550.

1992 (1)

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[Crossref]

1991 (1)

1990 (1)

D. R. Guyer and D. D. Lowenthal, Proc. Soc. Photo-opt. Instrum. Eng. 1220, 41 (1990).

1989 (2)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[Crossref]

T. D. Raymond, P. Esherick, and A. V. Smith, Opt. Lett. 14, 1116 (1989).
[Crossref] [PubMed]

1973 (1)

H. Kildal and J. C. Mikkelsen, Opt. Commun. 9, 315 (1973).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 686.

Bosenberg, W. R.

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[Crossref]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[Crossref]

Dmitriev, V. G.

For an extensive list of references on optical parametric oscillators see V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer, New York, 1991), Vol. 64, pp. 181.

Esherick, P.

Gurzadyan, G. G.

For an extensive list of references on optical parametric oscillators see V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer, New York, 1991), Vol. 64, pp. 181.

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[Crossref]

D. R. Guyer and D. D. Lowenthal, Proc. Soc. Photo-opt. Instrum. Eng. 1220, 41 (1990).

Kildal, H.

H. Kildal and J. C. Mikkelsen, Opt. Commun. 9, 315 (1973).
[Crossref]

Lowenthal, D. D.

D. R. Guyer and D. D. Lowenthal, Proc. Soc. Photo-opt. Instrum. Eng. 1220, 41 (1990).

Mikkelsen, J. C.

H. Kildal and J. C. Mikkelsen, Opt. Commun. 9, 315 (1973).
[Crossref]

Nikogosyan, D. N.

For an extensive list of references on optical parametric oscillators see V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer, New York, 1991), Vol. 64, pp. 181.

Pelouch, W. S.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[Crossref]

Rakestraw, D.

This absorption spectrum was measured by D. Rakestraw, of Sandia National Laboratories, Livermore, Calif. 94550.

D. Rakestraw, Combustion Research Facility, Sandia National Laboratories, Livermore, Calif. 94550 (personal communication, 1992).

Raymond, T. D.

Schepler, K. L.

Smith, A. V.

Tang, C. L.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 686.

Ziegler, B. C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[Crossref]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett. 55, 1952 (1989).
[Crossref]

Opt. Commun. (1)

H. Kildal and J. C. Mikkelsen, Opt. Commun. 9, 315 (1973).
[Crossref]

Opt. Lett. (1)

Proc. Soc. Photo-opt. Instrum. Eng. (1)

D. R. Guyer and D. D. Lowenthal, Proc. Soc. Photo-opt. Instrum. Eng. 1220, 41 (1990).

Other (5)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 686.

D. Rakestraw, Combustion Research Facility, Sandia National Laboratories, Livermore, Calif. 94550 (personal communication, 1992).

For an extensive list of references on optical parametric oscillators see V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer, New York, 1991), Vol. 64, pp. 181.

The temporal jitter is measured relative to the pump pulse.

This absorption spectrum was measured by D. Rakestraw, of Sandia National Laboratories, Livermore, Calif. 94550.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the single-frequency parametric frequency-conversion system. The separate nonlinear stages are pumped by the 532- and 1064-nm outputs of an injection-seeded Nd:YAG laser. The complete system consists of the single-longitudinal-mode (SLM) OPO the nonresonant OPO (NRO) amplifier, the optical parametric amplifier (OPA), and a final difference-frequency generation (DPG) or sum-frequency generation (SFG) stage. This system produces continuously tunable single-frequency radiation at 700 nm < λ1 < 920 nm, 1.3 μm < λ2 < 2.2 μm, 2.1 μm < λ3 < 4.0 μm, 4 μm < λDFG < 18 μm, and 600 nm < λSFG < 700 nm as indicated (One can fill the gap between 0.92 and 1.3 μm by use of additional KTP crystals.) The stages are linked together with computer-controlled rotation stages.

Fig. 2
Fig. 2

Schematic of the SLM OPO. The nonlinear material is KTP. The resonator consists of a back cavity mirror, a grating, and a tuning mirror. A split photodiode provides feedback for adjustment of the cavity length for a single-frequency-scanning range (without mode hops) of >100 cm−1.

Fig. 3
Fig. 3

Étalon rings observed when scattered OPO output is transmitted through a 10-GHz free-spectral-range étalon. The single set of rings indicates single-frequency operation.

Fig. 4
Fig. 4

Transmission of SLM OPO output through a 4-GHz free-spectral-range solid étalon during tuning of the OPO wavelength shows its narrow bandwidth (<500 MHz).

Fig. 5
Fig. 5

Temporal profile of ten SLM OPO output pulses (1 ns/division). One can see the smooth pulse shape, the small temporal jitter (~200 ps relative to the pump pulse), and the high degree of amplitude stability.

Fig. 6
Fig. 6

Schematic of the NRO amplifier stage. The NRO amplifies and downconverts seed light from the SLM OPO and consists of two crystals of KTP and three mirrors, M1, M2, M3, coated as follows: M1 is a high reflector for λ2, M2 is a high reflector for the pump (532 nm) and M3 is a high reflector for the pump and for λ1. An ~1% reflection from an uncoated plane window (W) couples the seed light into the NRO and permits simple extraction of the amplified λ1 radiation. The main advantages of this configuration are its high efficiency and its simplicity in not having to slave the cavity length to the injected seed frequency.

Fig. 7
Fig. 7

Total external conversion efficiency versus pump-pulse energy of the NRO when unseeded (squares) and seeded with 10 μJ of light from the SLM OPO (circles) for the signal–idler pair of 760 nm (λ1) and 1.77 μm (λ2). The seed radiation serves to increase the efficiency and control the bandwidth of the NRO.

Fig. 8
Fig. 8

Output of the NRO versus seed-pulse energy. We observed bandwidth control for pulse energies as low as 1 pJ. The curve indicates the trend.

Fig. 9
Fig. 9

Output of the NRO versus delay between the seed and pump pulses. The pump- and seed-pulse durations are ~7 and ~3 ns, respectively. “Decay” refers to the time difference between the peaks of the pulses; positive values indicate that the seed pulse precedes the pump pulse. The output of the NRO is insensitive for time delays of 1 to 4 ns. The curve shows the trend.

Fig. 10
Fig. 10

Schematic of the 1.064-μm-pumped OPA stage. The OPA amplifies and downconverts the λ2 output of the NRO and consists of two KTP crystals and two mirrors that combine and separate the pump with the input and output beams. M4 is a high reflector for the pump that transmits wavelengths of 1.4–2.2 μm (glass substrate). M5 is a high reflector for the pump that transmits wavelengths of 1.4–4.0 μm (CaF2 substrate).

Fig. 11
Fig. 11

Output energy of the SLM OPO–NRO–OPA system versus wavelength. Pump input 1.064 μm is 300 mJ. Tunable input (λ2) is ~5 mJ.

Fig. 12
Fig. 12

Measured DFG tuning curve in AgGaSe2. By using the orthogonally polarized λ2 and λ3 outputs of the SLM OPO–NRO–OPA system as the pump and signal inputs of the single-pass AgGaSe2 DFG stage, one produces single-frequency radiation over the range of 4–18 μm. The curve is the tuning curve calculated by use of Sellmeier coefficients given in Ref. 9.

Fig. 13
Fig. 13

Absorption spectrum of HCl35 near 3.37 μm (2963.5 cm−1) measured with a computer-controlled scan of the SLM OPO–NRO–OPA system.11 The width of this absorption peak indicates that the linewidth of the output at 3.37 μm is ~420 MHz (~0.014 cm−1). This spectrum demonstrates the potential of this system for spectroscopic and other applications.

Metrics