Abstract

We present experimental results of frequency tuning and stabilization of a type-II phase-matched potassium titanyl phosphate (KTP) doubly resonant optical parametric oscillator. Four tuning elements were employed to control the stability and tuning of the parametric oscillator. Discrete frequency tuning of a nearly degenerate optical parametric oscillator over a range of ~3 THz was obtained by crystal angle tuning and cavity-length scanning. We achieved continuous frequency tuning over a 0.5-GHz range through the use of temperature and electro-optic tuning of the KTP crystal. Using these frequency-control techniques, we phase locked the signal–idler beat frequency to an external microwave frequency source, thus demonstrating tunable optical frequency division. The power spectral density of the residual phase noise of the phase-locked signal–idler beat note was measured to be 0.3mrad/Hz. Characteristics of two different cavity designs, their operations, tuning behavior, and stability issues are examined.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For reviews of OPO’s, see R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: a Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702; R. G. Smith, “Optical parametric oscillators,” in Advances in Lasers, A. K. Levine, A. J. DeMaria, eds. (Dekker, New York, 1976), Vol. 4, pp. 189–307.
  2. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
    [CrossRef]
  3. C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, R. L. Byer, “Efficient, single-axial-mode operation of a monolithic MgO:LiNbO3optical parametric oscillator,” Opt. Lett. 14, 1134–1136 (1989).
    [CrossRef] [PubMed]
  4. C. D. Nabors, S. T. Yang, T. Day, R. L. Byer, “Coherence properties of a doubly resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7, 815–820 (1990).
    [CrossRef]
  5. D. Lee, N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992).
    [CrossRef] [PubMed]
  6. C. Salomon, D. Hils, J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988); T. Day, E. K. Gustafson, R. L. Byer, “Active frequency stabilization of a 1.062-μ m, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth,” Opt. Lett. 15, 221–223 (1990).
    [CrossRef] [PubMed]
  7. N. C. Wong, “Optical frequency division using an optical parametric oscillator,” Opt. Lett. 15, 1129–1131 (1990).
    [CrossRef] [PubMed]
  8. J. J. Snyder, E. Giacobino, C. Fabre, A. Heidmann, M. Ducloy, “Sub-shot-noise measurements using the beat note between quantum-correlated photon beams,” J. Opt. Soc. Am. B 7, 2132–2136 (1990).
    [CrossRef]
  9. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
    [CrossRef]
  10. N. C. Wong, “Gravity-wave detection via an optical parametric oscillator,” Phys. Rev. A 45, 3176–3183 (1992).
    [CrossRef] [PubMed]
  11. N. C. Wong, “Optical frequency counting from the UV to the near IR,” Opt. Lett. 17, 1155–1157 (1992).
    [CrossRef] [PubMed]
  12. N. C. Wong, “Proposal for a 10-THz precision optical frequency comb generator,” IEEE Photon. Technol. Lett. 4, 1166–1168 (1992).
    [CrossRef]
  13. See, for example, H. J. Kimble, D. F. Walls, eds., feature issue on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4, 1450–1741 (1987).
    [CrossRef]
  14. R. Graham, H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I,” Z. Phys. 210, 276–302 (1968).
    [CrossRef]
  15. J. D. Bierlein, H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  16. D. H. Jundt, M. M. Fejer, R. L. Byer, R. G. Norwood, P. F. Bordui, “69% Efficient continuous-wave second-harmonic generation in lithium-rich lithium niobate,” Opt. Lett. 16, 1856–1858 (1991).
    [CrossRef] [PubMed]
  17. J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
    [CrossRef]
  18. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
    [CrossRef] [PubMed]
  19. J. Q. Yao, T. S. Fahlen, “Calculation of optimum phase matching parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
    [CrossRef]
  20. P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
    [CrossRef]
  21. N. C. Wong, D. Lee, L. R. Brothers, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–111.
  22. B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.
  23. M. Kourogi, K. Nakagawa, M. Ohtsu, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–112.

1992

N. C. Wong, “Gravity-wave detection via an optical parametric oscillator,” Phys. Rev. A 45, 3176–3183 (1992).
[CrossRef] [PubMed]

N. C. Wong, “Proposal for a 10-THz precision optical frequency comb generator,” IEEE Photon. Technol. Lett. 4, 1166–1168 (1992).
[CrossRef]

D. Lee, N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992).
[CrossRef] [PubMed]

N. C. Wong, “Optical frequency counting from the UV to the near IR,” Opt. Lett. 17, 1155–1157 (1992).
[CrossRef] [PubMed]

1991

1990

1989

1988

1987

1984

J. Q. Yao, T. S. Fahlen, “Calculation of optimum phase matching parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

1973

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

1970

J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

1968

R. Graham, H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I,” Z. Phys. 210, 276–302 (1968).
[CrossRef]

Ashkin, A.

J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Baer, T. M.

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein, H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Bordui, P. F.

Brothers, L. R.

N. C. Wong, D. Lee, L. R. Brothers, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–111.

Byer, R. L.

Crawford, M. K.

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

Day, T.

Ducloy, M.

Eckardt, R. C.

Fabre, C.

Fahlen, T. S.

J. Q. Yao, T. S. Fahlen, “Calculation of optimum phase matching parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Fejer, M. M.

Giacobino, E.

Graham, R.

R. Graham, H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I,” Z. Phys. 210, 276–302 (1968).
[CrossRef]

Haken, H.

R. Graham, H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I,” Z. Phys. 210, 276–302 (1968).
[CrossRef]

Hall, J. L.

Heidmann, A.

Hils, D.

Hu, B. Q.

Huang, C. E.

Jundt, D. H.

Kobayashi, T.

B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.

Kourogi, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–112.

Kozlovsky, W. J.

Lee, B. Y.

B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.

Lee, D.

D. Lee, N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992).
[CrossRef] [PubMed]

N. C. Wong, D. Lee, L. R. Brothers, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–111.

Morimoto, A.

B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.

Morris, P. A.

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

Nabors, C. D.

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–112.

Norwood, R. G.

Ohtsu, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–112.

Roelofs, M. G.

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

Salomon, C.

Smith, R. G.

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Snyder, J. J.

Sueta, T.

B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.

Vanherzeele, H.

Wong, N. C.

D. Lee, N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992).
[CrossRef] [PubMed]

N. C. Wong, “Proposal for a 10-THz precision optical frequency comb generator,” IEEE Photon. Technol. Lett. 4, 1166–1168 (1992).
[CrossRef]

N. C. Wong, “Optical frequency counting from the UV to the near IR,” Opt. Lett. 17, 1155–1157 (1992).
[CrossRef] [PubMed]

N. C. Wong, “Gravity-wave detection via an optical parametric oscillator,” Phys. Rev. A 45, 3176–3183 (1992).
[CrossRef] [PubMed]

N. C. Wong, “Optical frequency division using an optical parametric oscillator,” Opt. Lett. 15, 1129–1131 (1990).
[CrossRef] [PubMed]

N. C. Wong, D. Lee, L. R. Brothers, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–111.

Yang, S. T.

Yao, J. Q.

J. Q. Yao, T. S. Fahlen, “Calculation of optimum phase matching parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

J. E. Bjorkholm, A. Ashkin, R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

IEEE Photon. Technol. Lett.

N. C. Wong, “Proposal for a 10-THz precision optical frequency comb generator,” IEEE Photon. Technol. Lett. 4, 1166–1168 (1992).
[CrossRef]

J. Appl. Phys.

J. Q. Yao, T. S. Fahlen, “Calculation of optimum phase matching parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

N. C. Wong, “Gravity-wave detection via an optical parametric oscillator,” Phys. Rev. A 45, 3176–3183 (1992).
[CrossRef] [PubMed]

Z. Phys.

R. Graham, H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I,” Z. Phys. 210, 276–302 (1968).
[CrossRef]

Other

P. A. Morris, M. K. Crawford, M. G. Roelofs, J. D. Bierlein, T. M. Baer, “Ionic conductivity and damage mechanism in KTiOPO4crystals,” in Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion, P. F. Bordui, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1561, 104–111 (1991).
[CrossRef]

N. C. Wong, D. Lee, L. R. Brothers, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–111.

B. Y. Lee, T. Kobayashi, A. Morimoto, T. Sueta, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 146–147.

M. Kourogi, K. Nakagawa, M. Ohtsu, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1992), pp. 110–112.

For reviews of OPO’s, see R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: a Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702; R. G. Smith, “Optical parametric oscillators,” in Advances in Lasers, A. K. Levine, A. J. DeMaria, eds. (Dekker, New York, 1976), Vol. 4, pp. 189–307.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two-element DRO cavity design. The DRO is mounted with a single mirror mount for improved mechanical stability.

Fig. 2
Fig. 2

Three-element DRO cavity design. The mirrors are rigidly fixed to an aluminum spacer block, and the crystal is attached to a rotation stage and a mirror mount for angle tuning.

Fig. 3
Fig. 3

PZT cavity-length scanning trace of two-element DRO output power. Cavity-length spacing is ~4.7 nm between resonance peaks. The leftmost seven modes belong to a subset in which adjacent modes differ in their signal–idler beat frequency by two free spectral ranges, or ~8.6 GHz.

Fig. 4
Fig. 4

Typical optical spectrum analyzer traces of signal and idler outputs as the DRO was scanned and locked to adjacent resonance modes of a mode subset. The free spectral range for this series was ~4.6 GHz.

Fig. 5
Fig. 5

Experimental setup for phase locking the signal–idler beat frequency of the two-element DRO to a microwave synthesized source, shown with the PZT intensity servo and E-field phase-locked loop.

Fig. 6
Fig. 6

Trace of demodulated signal–idler beat-note spectrum showing a 3-dB width (FWHM) that is limited by the 60-mHz resolution bandwidth of the fast-Fourier-transform spectrum analyzer (vertical scale, 20 dB/division; horizontal scale, 1 Hz/division; center frequency, 50 kHz; sweep time, 33 s).

Fig. 7
Fig. 7

(a) Time trace of a 12.3-GHz signal–idler beat note demodulated to a ~1-Hz signal. Low-pass filter: 10 Hz. (b) Residual of a fit to trace (a) with a 1-Hz sine wave, magnification 10×. Rms phase noise is ~28 mrad.

Tables (2)

Tables Icon

Table 1 Tuning Ranges and Coefficients of Signal–Idler Difference Frequency fd of Two-Element Flux-Grown KTP DRO

Tables Icon

Table 2 Tuning Ranges and Coefficients of Signal–Idler Difference Frequency fd of Three-Element Hydrothermally Grown KTP PRO

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

f p = f 1 + f 2 .
f p = f 1 f 2 ,
f 1 , 2 = 1 2 ( f p ± f d ) .
a i a i = a i + Δ a i ,
Δ λ i = λ i λ i = λ i f i Δ f i ,
Δ L i = m i ( λ i / 2 ) m i ( λ i / 2 ) = ( λ i / 2 ) [ Δ m i Δ f i ( m i / f i ) ] .
F i = c / 2 L i = f i / m i ,
Δ l + d Δ n i = ( λ i / 2 ) ( Δ m i Δ f i / F i ) .
Δ f 1 = Δ f 2 Δ f .
f i Δ l + [ l + d ( n i + α i f i ) ] Δ f i = ( c / 2 ) Δ m i .
( c / 2 ) ( Δ m 1 + Δ m 2 ) = f p Δ l + d ( n 1 n 2 + α 1 f 1 α 2 f 2 ) Δ f ,
( c / 2 ) ( Δ m 1 Δ m 2 ) = ( f 1 f 2 ) Δ l + [ 2 l + d ( n 1 + n 2 + α 1 f 1 α 2 f 2 ) ] Δ f ,
Δ f = ( f 2 Δ m 1 f 1 Δ m 2 ) [ f 2 / F 1 + f 1 / F 2 ) + ( 2 d / c ) ( α 1 + α 2 ) f 1 f 2 ] 1 .
Δ f = ( Δ m 1 Δ m 2 ) [ 2 / F ¯ + ( d / c ) ( α 1 + α 2 ) f p ] 1 ,
F ¯ = c / ( L 1 + L 2 )
Δ f = [ 1 / F ¯ + ( d / 2 c ) ( α 1 + α 2 ) f p ] 1 F ¯ .
Δ l = d ( n 1 n 2 + α 1 f 1 α 2 f 2 ) ( Δ f / f p ) .
Δ f = ( c / 2 d ) ( n 1 n 2 + α 1 f 1 α 2 f 2 ) 1 190 GHz .
P 1 = 4 γ κ P p { [ F p ( Δ / κ ) 2 ] 1 / 2 1 } ,
[ F p ( Δ ¯ / κ ) 2 ] 1 / 2 1 = 1 2 ( F p 1 ) ,
2 Δ ¯ = κ ( 3 F p 2 F p 1 ) 1 / 2 .

Metrics