Abstract

Lasers that are almost optically isotropic may operate on more than one polarization mode. Here we report on the polarization states of microchip YAG lasers, their control by polarized feedback, and the dynamics of the polarization flips. Switching and polarization relaxation oscillations are observed, both of which are much faster than the inverse of the population decay rate.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. May, G. Stéphan, J. Opt. Soc. Am. B 6, 2355 (1989).
    [CrossRef]
  2. W. Xiong, P. Glanznig, P. Paddon, A. D. May, M. Bourouis, S. Laniepce, G. Stéphan, J. Opt. Soc. Am. B 8, 1236 (1991).
    [CrossRef]
  3. P. Paddon, E. Sjerve, A. D. May, M. Bourouis, G. Stéphan, J. Opt. Soc. Am. B 9, 574 (1992).
    [CrossRef]
  4. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
    [CrossRef] [PubMed]
  5. A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).
    [CrossRef] [PubMed]
  6. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef] [PubMed]
  7. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 618 (1989).
    [CrossRef] [PubMed]
  8. P. Esherick, A. Owyoung, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1988), paper ThB2.
  9. P. Esherick, A. Owyoung, in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 2 (1988).
    [CrossRef]
  10. We thank John Bernard of the Institute for Microstructural Sciences of the National Research Council, Ottawa, Canada, for the loan of the crystal.
  11. This is at complete variance with the results given in Ref. 9. There, however, the laser was pumped near 800 nm and operated in two modes, presumably with polarization competition. Clearly such dramatic contrast between the two sets of observations invites further research.
  12. In principle the behavior of the laser should depend on the orientation of the feedback relative to the oscillating mode and to the orientation of the feedback relative to the natural modes of the free-running laser. In our microchip lasers the latter dependence does not appear to be important, and thus we have chosen a nomenclature that identifies only the orientation of the mode with respect to the polarization of the feedback; i.e., we distinguish two, not four, cases. This nomenclature is different from that used in our earlier publications.
  13. This applies to the monomode region. For high pump powers the laser becomes multimode.
  14. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1966).
  15. J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
    [CrossRef]
  16. A. D. May, G. Stéphan, in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, E. Wolf, eds. (Plenum, New York, 1989).

1992 (1)

1991 (1)

1989 (3)

1988 (1)

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

1987 (1)

1985 (1)

Berger, J.

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

Bourouis, M.

Esherick, P.

A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).
[CrossRef] [PubMed]

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

P. Esherick, A. Owyoung, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1988), paper ThB2.

P. Esherick, A. Owyoung, in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 2 (1988).
[CrossRef]

Glanznig, P.

Hadley, G. R.

Harnagel, G.

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

Laniepce, S.

May, A. D.

Mooradian, A.

Owyoung, A.

A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).
[CrossRef] [PubMed]

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

P. Esherick, A. Owyoung, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1988), paper ThB2.

P. Esherick, A. Owyoung, in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 2 (1988).
[CrossRef]

Paddon, P.

Rahn, L. A.

Schmitt, R. L.

Scifres, D. R.

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1966).

Sjerve, E.

Stéphan, G.

Streifer, Z.

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

Welch, D. F.

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

Xiong, W.

Zayhowski, J. J.

Appl. Phys. Lett. (1)

J. Berger, G. Harnagel, D. F. Welch, D. R. Scifres, Z. Streifer, Appl. Phys. Lett. 53, 268 (1988).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (4)

Other (8)

P. Esherick, A. Owyoung, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1988), paper ThB2.

P. Esherick, A. Owyoung, in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 2 (1988).
[CrossRef]

We thank John Bernard of the Institute for Microstructural Sciences of the National Research Council, Ottawa, Canada, for the loan of the crystal.

This is at complete variance with the results given in Ref. 9. There, however, the laser was pumped near 800 nm and operated in two modes, presumably with polarization competition. Clearly such dramatic contrast between the two sets of observations invites further research.

In principle the behavior of the laser should depend on the orientation of the feedback relative to the oscillating mode and to the orientation of the feedback relative to the natural modes of the free-running laser. In our microchip lasers the latter dependence does not appear to be important, and thus we have chosen a nomenclature that identifies only the orientation of the mode with respect to the polarization of the feedback; i.e., we distinguish two, not four, cases. This nomenclature is different from that used in our earlier publications.

This applies to the monomode region. For high pump powers the laser becomes multimode.

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1966).

A. D. May, G. Stéphan, in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, E. Wolf, eds. (Plenum, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the semimonolithic microchip YAG laser.

Fig. 2
Fig. 2

(a), (d) IA and PZ voltage as a function of time. (b) IB and PZ voltage as a function of time. (c), (e) IA as a function of the PZ voltage. (f) IA on an enlarged time scale. Curves (a), (b), (c), and (f) are for the semimonolithic laser. Curves (d) and (e) are for the single external mirror cavity. All curves were obtained for a PZ voltage varying at a rate of ~20 Hz.

Fig. 3
Fig. 3

(a) IA and IB for part of a cycle for a scan rate of 50 Hz. (b) Sum of IA and IB, in the transition region, on an enlarged time scale.

Fig. 4
Fig. 4

IA and IB for part of a cycle for a scan rate of 400 Hz.

Fig. 5
Fig. 5

Intensity of the laser, polarized parallel and perpendicular to the direction of the free-running laser, for low feedback and a scan rate of 500 Hz. There is no polarization flip.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = ± 2 ( c + f cos ϕ f ) S r + [ ( S r ) 2 4 f 2 sin 2 ϕ f ± 4 f S i sin ϕ f ] 1 / 2 ,

Metrics