Abstract

Spectroscopic data on the absorption and the fluorescence spectra and fluorescence lifetimes are presented for Cr4+:Y2SiO5, the newest Cr4+-doped laser crystal. The fluorescence measurements were conducted at temperatures ranging from 10 to 310 K, and the absorption spectra were measured at room temperature and 77 K. Spectroscopic analysis of the absorption and the emission spectra is performed on the basis of a distorted tetrahedral symmetry for the Cr4+ site, namely C3V. The tetravalent chromium substitutes for Si4+ in this crystal, and there is no evidence for the presence of chromium in any other valence state. The Cr4+ site is characterized by strong crystal field parameters. We have tentatively assigned the sharp line at 1146 nm in the low-temperature fluorescence spectrum (excited by 1064-nm radiation) to the spin-forbidden singlet-to-triplet transition 1E–3A2, and the broad band with the peak at 1225 nm to the spin-allowed 3T23A2 transition. Excitation at 532 nm results in an additional type of emission in the near infrared. A similar dependence of the lasing wavelength on the pump wavelength was observed in the laser operation of the crystal at 77 K [ Chai et al., in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series ( Optical Society of America, Washington, D.C., 1992), pp. 28– 30].

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
    [CrossRef] [PubMed]
  2. G. M. Zverev, A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), pp. 66–70.
  3. S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Solids (Academic, New York, 1970).
  4. B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).
  5. A. A. Kaminski, Laser Crystals (Springer-Verlag, Berlin, 1990).
    [CrossRef]
  6. A. B. P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1968).
  7. B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
    [CrossRef]
  8. U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.
  9. H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.
  10. R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.
  11. B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).
  12. T. H. Keil, “Shapes of impurity absorption bands in solids,” Phys. Rev. 140A, 601 (1965).
    [CrossRef]
  13. J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
    [CrossRef]
  14. W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
    [CrossRef]
  15. N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).
  16. N. F. Mott, “On the absorption of light by crystals,” Proc. R. Soc. A 167, 384 (1938).
    [CrossRef]
  17. L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
    [CrossRef]
  18. Hommerisch et al.8 assigned the sharp line at 1146 nm to the 3T2–3A2zero-phonon transition. Under that assumption, comparing the areas of the zero-phonon line and the whole luminescence spectrum (e−S= Azero phonon/Atotal), we19 obtained S≈ 4.25. Again using the relation11 Ezero phonon= (S−1/2)ħω + Eemission peakfor the emission peak at 1225 nm, we obtained ħω= 150 cm−1. Using these results, we obtained Δa≈ 28 842 cm−1, which is again significantly different from the measured activation energy.
  19. R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
    [CrossRef]
  20. P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
    [CrossRef]
  21. T. H. Allik, B. H. T. Chai, L. D. Merkle, “Crystal growth and spectroscopic analysis of Cr4+doped melilite compounds,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 84–86.
  22. C. Deka, “Spectroscopy of tetravalent chromium in different hosts in search for new, tunable, broad-band lasers in the 1.2 μ m band,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1992) (University Microfilm Inc., Ann Arbor, Mich.).
  23. C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.
  24. M. V. Iverson, W. A. Sibley, “Temperature dependence of Ni2+luminescence in KZnF3, MgF2and MgO,” J. Lumin. 20, 311 (1979).
    [CrossRef]
  25. S. M. Jacobsen, H. U. Gudel, “Higher excited state luminescence in Ti2+:MgCl2,” J. Lumin. 43, 125 (1989).
    [CrossRef]

1991 (1)

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

1989 (1)

S. M. Jacobsen, H. U. Gudel, “Higher excited state luminescence in Ti2+:MgCl2,” J. Lumin. 43, 125 (1989).
[CrossRef]

1988 (1)

1986 (3)

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

1979 (1)

M. V. Iverson, W. A. Sibley, “Temperature dependence of Ni2+luminescence in KZnF3, MgF2and MgO,” J. Lumin. 20, 311 (1979).
[CrossRef]

1975 (1)

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

1969 (1)

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

1965 (1)

T. H. Keil, “Shapes of impurity absorption bands in solids,” Phys. Rev. 140A, 601 (1965).
[CrossRef]

1938 (1)

N. F. Mott, “On the absorption of light by crystals,” Proc. R. Soc. A 167, 384 (1938).
[CrossRef]

Alfano, R. R.

Allik, T. H.

T. H. Allik, B. H. T. Chai, L. D. Merkle, “Crystal growth and spectroscopic analysis of Cr4+doped melilite compounds,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 84–86.

Andrauskas, D. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

Andrews, L. J.

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Bartram, R. H.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

Bass, M.

C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

Belov, N. V.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

Bergin, F. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Capobianco, J. A.

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.

Chai, B. H. T.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.

T. H. Allik, B. H. T. Chai, L. D. Merkle, “Crystal growth and spectroscopic analysis of Cr4+doped melilite compounds,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 84–86.

Charpie, J. C.

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

Cormier, G.

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

Cormier, J.

R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.

Deka, C.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

C. Deka, “Spectroscopy of tetravalent chromium in different hosts in search for new, tunable, broad-band lasers in the 1.2 μ m band,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1992) (University Microfilm Inc., Ann Arbor, Mich.).

C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.

Dolan, J. F.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Donegan, J. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Eilers, H.

U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.

Gayen, S. K.

Giunta, C. J.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Glynn, T. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Gudel, H. U.

S. M. Jacobsen, H. U. Gudel, “Higher excited state luminescence in Ti2+:MgCl2,” J. Lumin. 43, 125 (1989).
[CrossRef]

Gurney, R. W.

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

Henderson, B.

B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

Hommerisch, U.

U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.

Illyukhin, V. V.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

Imbusch, G. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

Iverson, M. V.

M. V. Iverson, W. A. Sibley, “Temperature dependence of Ni2+luminescence in KZnF3, MgF2and MgO,” J. Lumin. 20, 311 (1979).
[CrossRef]

Jacobsen, S. M.

S. M. Jacobsen, H. U. Gudel, “Higher excited state luminescence in Ti2+:MgCl2,” J. Lumin. 43, 125 (1989).
[CrossRef]

U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.

Kamimura, H.

S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Solids (Academic, New York, 1970).

Kaminski, A. A.

A. A. Kaminski, Laser Crystals (Springer-Verlag, Berlin, 1990).
[CrossRef]

Keil, T. H.

T. H. Keil, “Shapes of impurity absorption bands in solids,” Phys. Rev. 140A, 601 (1965).
[CrossRef]

Kharitonov, Yu. A.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

Lee, K. H.

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

Lempicki, A.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

Lever, A. B. P.

A. B. P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1968).

Maksimov, B. A.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

McCollum, B. C.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

McCollum, T.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

Merkle, L. D.

T. H. Allik, B. H. T. Chai, L. D. Merkle, “Crystal growth and spectroscopic analysis of Cr4+doped melilite compounds,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 84–86.

Moncorge, P.

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

Moncorge, R.

R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.

Mott, N. F.

N. F. Mott, “On the absorption of light by crystals,” Proc. R. Soc. A 167, 384 (1938).
[CrossRef]

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

Munin, E.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

Petricevic, V.

Pinto, A.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

Remeika, J. P.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

Shestakov, A. V.

G. M. Zverev, A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), pp. 66–70.

Shimony, Y.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

Sibley, W. A.

M. V. Iverson, W. A. Sibley, “Temperature dependence of Ni2+luminescence in KZnF3, MgF2and MgO,” J. Lumin. 20, 311 (1979).
[CrossRef]

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

Simkin, D. J.

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.

Sugano, S.

S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Solids (Academic, New York, 1970).

Tanabe, Y.

S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Solids (Academic, New York, 1970).

Thomas, L. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

Vehse, W. E.

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

Verdun, H. R.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

Yen, W. M.

U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.

Yun, S. I.

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

Zhang, X. X.

C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

Zverev, G. M.

G. M. Zverev, A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), pp. 66–70.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

P. Moncorge, G. Cormier, D. J. Simkin, J. A. Capobianco, “Fluorescence analysis of chromium-doped forsterite (Mg2SiO4),” IEEE J. Quantum Electron. 27, 114 (1991).
[CrossRef]

J. Lumin. (4)

M. V. Iverson, W. A. Sibley, “Temperature dependence of Ni2+luminescence in KZnF3, MgF2and MgO,” J. Lumin. 20, 311 (1979).
[CrossRef]

S. M. Jacobsen, H. U. Gudel, “Higher excited state luminescence in Ti2+:MgCl2,” J. Lumin. 43, 125 (1989).
[CrossRef]

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, J. P. Remeika, “Optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57–63 (1986).
[CrossRef]

W. E. Vehse, K. H. Lee, S. I. Yun, W. A. Sibley, “Ni2+emission in MgO, KMgF2, KZnF3, and MgF2,” J. Lumin. 10, 149–162 (1975).
[CrossRef]

Phys. Rev. (1)

T. H. Keil, “Shapes of impurity absorption bands in solids,” Phys. Rev. 140A, 601 (1965).
[CrossRef]

Phys. Rev. B (2)

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

R. H. Bartram, J. C. Charpie, L. J. Andrews, A. Lempicki, “Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models,” Phys. Rev. B 34, 2741–2750 (1986).
[CrossRef]

Proc. R. Soc. A (1)

N. F. Mott, “On the absorption of light by crystals,” Proc. R. Soc. A 167, 384 (1938).
[CrossRef]

Sov. Phys. Doklady (1)

B. A. Maksimov, Yu. A. Kharitonov, V. V. Illyukhin, N. V. Belov, “Crystal structure of Y-Oxysilicate Y2(SiO4)O,” Sov. Phys. Doklady 13, 1188–1190 (1969).

Other (14)

A. A. Kaminski, Laser Crystals (Springer-Verlag, Berlin, 1990).
[CrossRef]

A. B. P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1968).

B. H. T. Chai, Y. Shimony, C. Deka, X. X. Zhang, E. Munin, M. Bass, “Laser performance of Cr4+:Y2SiO5at liquid nitrogen temperature,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series, L. L. Chase, A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 28–30.
[CrossRef]

U. Hommerisch, H. Eilers, S. M. Jacobsen, W. M. Yen, “Spectroscopic investigation of the NIR center in Cr-doped Y2SiO5,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), paper AWB-11.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, A. Pinto, “Laser performance of chromium-aluminium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 85–92.

R. Moncorge, D. J. Simkin, J. Cormier, J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium doped forsterite,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 93–97.

B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

Hommerisch et al.8 assigned the sharp line at 1146 nm to the 3T2–3A2zero-phonon transition. Under that assumption, comparing the areas of the zero-phonon line and the whole luminescence spectrum (e−S= Azero phonon/Atotal), we19 obtained S≈ 4.25. Again using the relation11 Ezero phonon= (S−1/2)ħω + Eemission peakfor the emission peak at 1225 nm, we obtained ħω= 150 cm−1. Using these results, we obtained Δa≈ 28 842 cm−1, which is again significantly different from the measured activation energy.

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

G. M. Zverev, A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), pp. 66–70.

S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Solids (Academic, New York, 1970).

T. H. Allik, B. H. T. Chai, L. D. Merkle, “Crystal growth and spectroscopic analysis of Cr4+doped melilite compounds,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 84–86.

C. Deka, “Spectroscopy of tetravalent chromium in different hosts in search for new, tunable, broad-band lasers in the 1.2 μ m band,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1992) (University Microfilm Inc., Ann Arbor, Mich.).

C. Deka, M. Bass, B. H. T. Chai, X. X. Zhang, “Spectroscopic studies of Cr4+in different hosts,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 47–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarized absorption spectra of Cr4+:Y2SiO5 at (a) room temperature and (b) 77 K.

Fig. 2
Fig. 2

Fluorescence spectra of Cr4+:Y2SiO5 at different temperatures due to excitation at (a) 1064 and (b) 532 nm.

Fig. 3
Fig. 3

Tanabe–Sugano diagram for Cr4+ (d2) in tetrahedral symmetry.

Fig. 4
Fig. 4

Comparison of the theoretical band shape, based on the SCC model and the experimental fluorescence spectrum excited by 1064 nm at 10 K. The vertical lines with black circles at the top represent the magnitudes (right-hand vertical axis) of [Sm exp(−S)]/m! for different values of m (top axis).

Fig. 5
Fig. 5

Schematic diagram of the energy-level splitting and the polarization selection rules for the electric dipole radiative transitions of the Cr4+ ion in the symmetry C3V. The vertical lines with arrows at both ends connecting energy levels represent symmetry-allowed electronic transitions.

Fig. 6
Fig. 6

Fluorescence decay of Cr4+:Y2SiO5 at 1200 nm, measured at 9.1 K. The smooth line is the theoretical fit with the Forster–Dexter dipole–dipole energy-transfer model. The excitation wavelength was 1064 nm from a Q-switched Nd:YAG laser with pulses of 10-ns duration and operated at a repetition rate of 10 Hz.

Fig. 7
Fig. 7

Temperature dependence of lifetime τ of the fluorescence excited by 1064-nm radiation. Theoretical fits are shown for the SCC model (dashed curve) and Mott’s single-activation-energy model (solid curve).

Fig. 8
Fig. 8

[(τ0/τ) − 1] as a function of (1/T) for the fluorescence decay at 1200 nm. (The excitation wavelength was 1064 nm.) (b) Temperature dependence of lifetime τ of the fluorescence excited by 1064-nm radiation (open circles) compared with the empirical formula involving two different activation energies (solid curve).

Fig. 9
Fig. 9

Fluorescence properties of Cr4+:Y2SiO5 that are due to excitation at 532 nm. (a) High-resolution fluorescence spectrum at 10 K, showing the sharp line at 1146 nm; (b) fluorescence decays at 1200 and 1010 nm.

Fig. 10
Fig. 10

Temperature dependence of the lifetime of the initial (filled triangles) and the slower component (open circles) of the fluorescence measured at 1200 nm that is due to excitation by 532-nm radiation.

Tables (2)

Tables Icon

Table 1 Energy Levels of Cr4+ in Y2SiO5 with Reference to the 3A2 Ground State

Tables Icon

Table 2 Values Obtained for the Parameters in the Theoretical Model for the Fluorescence Dynamics of Cr4+ in Y2SiO5

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

U ( 3 A 2 ) = 12 D q ,
U ( 1 E ) = 12 D q + 8 B + 2 C 6 B 2 / ( 10 D q ) ,
U ( 1 A 1 ) = 12 D q + 16 B + 4 C 108 B 2 / ( 10 D q ) ,
U ( 3 T 2 ) = 2 D q ,
U [ 3 T 1 ( 3 F ) ] = 3 D q + 7.5 B 1 2 [ 225 B 2 + 100 ( D q ) 2 180 D q B ] 1 / 2 ,
U [ 3 T 1 ( 3 P ) ] = 3 D q + 7.5 B + 1 2 [ 225 B 2 + 100 ( D q ) 2 180 D q B ] 1 / 2 ,
U ( 1 T 2 ) = 2 D q + 8 B + 2 C 12 B 2 / ( 10 D q ) ,
U ( 1 T 1 ) = 2 D q + 12 B + 2 C .
U ( 1 E ) U ( 3 A 2 ) = 8 B + 2 C 6 B 2 / ( 10 D q ) = 8726 cm 1 .
U ( 3 T 2 ) U ( 3 A 2 ) = 10 D q = 9099 cm 1 .
U ( 1 A 1 ) U ( 3 A 2 ) = 16 B + 4 C 108 B 2 / ( 10 D q ) = 14749 cm 1 .
D q = 909.9 cm 1 , B = 506 cm 1 , C = 2423 cm 1
1 2 [ 225 B 2 + 100 ( D q ) 2 180 D q B ] 1 / 2 3792 cm 1 .
I ( t ) = exp ( t / τ γ t ) ,
1 τ = 1 τ r + W nr ( intra ) ,
f nr ( T ) = f nr ( 0 ) exp ( 2 n S ) p ! S p [ ( n + 1 ) / n ] p / 2 × I p { 2 S [ n ( n + 1 ) ] 1 / 2 } ,
n = [ exp ( ћ ω / k T ) 1 ] 1 ;
f total ( T ) = f r + f nr ( T ) ,
Δ a = ( Δ E ћ ω ) 2 / 4 S ћ ω .
1 / τ = P 1 / τ 1 + P 3 / τ 3 ,
P 1 = 2 exp ( Δ / k T ) / Z ,
P 3 = 6 / Z ,
Z = 2 + 6 exp ( Δ / k T ) ,
1 / τ 1 = A + C 13 exp ( Δ 13 / k T ) ,
1 / τ 3 = B + C 31 exp [ ( Δ 13 + Δ ) / k T ] + C 30 exp ( Δ 30 / k T ) ,
1 / τ = 1 / τ 0 + C * exp ( Δ 13 / k T ) + D * exp ( Δ 30 / k T ) ,
1 / τ 0 = ( 6 B + 2 A ) / 8 ,
C * = ( 2 C 13 + 6 C 31 ) / 8 ,
D * = ( 6 / 8 ) C 30 .

Metrics