Abstract

We study femtosecond-laser-pulse-induced electron emission from W(100), Al(110), and Ag(111) in the subdamage regime (1–44 mJ/cm2 fluence) by simultaneously measuring the incident-light reflectivity, total electron yield, and electron-energy distribution curves of the emitted electrons. The total-yield results are compared with a space-charge-limited extension of the Richardson–Dushman equation for short-time-scale thermionic emission and with particle-in-a-cell computer simulations of femtosecond-pulsed-induced thermionic emission. Quantitative agreement between the experimental results and two calculated temperature-dependent yields is obtained and shows that the yield varies linearly with temperature beginning at a threshold electron temperature of ~0.25 eV The particle-in-a-cell simulations also reproduce the experimental electron-energy distribution curves. Taken together, the experimental results, the theoretical calculations, and the results of the simulations indicate that thermionic emission from nonequilibrium electron heating provides the dominant source of the emitted electrons. Furthermore, the results demonstrate that a quantitative theory of space-charge-limited femtosecond-pulse-induced electron emission is possible.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
    [CrossRef]
  2. Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
    [CrossRef]
  3. Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
    [CrossRef]
  4. Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
    [CrossRef]
  5. Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
    [CrossRef]
  6. Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
    [CrossRef]
  7. J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
    [CrossRef]
  8. J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
    [CrossRef]
  9. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].
  10. G. L. Easley, Phys. Rev. Lett. 51, 2140 (1983); Phys. Rev. B 33, 2144 (1986); H. E. Elsayed-Ali, T. B. Norris, A. M. Pessot, and G. A. Morou, Phys. Rev. Lett. 58, 1212 (1987).
    [CrossRef] [PubMed]
  11. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
    [CrossRef] [PubMed]
  12. J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
    [CrossRef]
  13. M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
    [CrossRef] [PubMed]
  14. R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
    [CrossRef] [PubMed]
  15. See, e.g., A. C. Melissinos, Experiment in Modern Physics (Academic, San Diego, Calif., 1966), pp. 65–80.
  16. C. Giarardeau-Montaut and J. P. Giarardeau-Montaut, Appl. Phys. Lett. 55, 24 (1989); Phys. Rev. A 44, 1409 (1991); T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, J. Appl. Phys. 68, 4802 (1990); M. V. Ammosov, J. Opt. Soc. Am. B 8, 2260 (1991); G. Petite, P. Agostini, R. Trainham, E. Mevel, and P. Martin, Phys. Rev. B 45, 12210 (1992).
    [CrossRef]
  17. For effects of space-charge fields on steady-state electron beams see, e.g., H. Boersch, Z. Phys. 139, 110 (1954); B. Zimmerman, Advanced Electron Physics (Academic, New York, 1970); W. Knauuer, Optik 54, 211 (1979); E. de Chambost and C. Hennion, Optik 55, 357 (1980); J. M. J. van Leeuwen and G. H. Jansen, Optik 65, 179 (1983).
  18. K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
    [CrossRef] [PubMed]
  19. W. M. Wood, G. Focht, and M. C. Downer, Opt. Lett. 13, 984 (1988).
    [CrossRef] [PubMed]
  20. D. C. Anacker and J. L. Erskine, Rev. Sci. Instrum. 62, 1246 (1991).
    [CrossRef]
  21. J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.
  22. T. Tajima, Computational Plasma Physics (Addison-Wesley, New York, 1989).
  23. W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
    [CrossRef]
  24. X. Y. Wang and M. C. Downer, Opt. Lett. 17, 1450 (1992).
    [CrossRef]
  25. G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants (Longmans, Green, London, 1966).
  26. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
    [CrossRef] [PubMed]
  27. P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
    [CrossRef] [PubMed]
  28. W. A. Harrison, Electronic Structure and Properties of Solids (Dover, New York, 1989), pp. 490–500.
  29. D. A. Papaconstantopolis, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).
  30. S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
    [CrossRef]
  31. By contrast, for ns-pulse-induced thermionic emission the results of Lofothetis and Hartman3 on stainless steel show a transient (electron and lattice) temperature of 2800 K induced by 40-ns pulses at an intensity of 5.9 × 106W/cm2. For this case R0would have to be 7 cm for the inequality Δx/(2R0) ≪ 1 to be minimally satisfied, a spot size that is much bigger than that which can be reasonably used in the laboratory. Even if sample and chamber dimensions permitted fruitful use of such a large spot size, the energy/pulse would have to be of the order of 36 J for the temperature rise reported by Lofothetis and Hartman, a quantity not readily obtained with laboratory ns laser sources. For ps-pulse-induced MPPE emission ideas similar to the present can be used to estimate the yield; however, since there is no thermal activation in the MPPE regime, extension of the Richardson–Dushman equation is precluded, and one must use the slightly different formulation presented in Ref. 28, where the size of the space-charge barrier is set equal to the initial kinetic energy (in the direction normal to the surface) of the least energetic electrons that eventually escape. Unfortunately, unlike the model presented here the model of Ref. 28 does not simply extrapolate into the nonspace-charge-limited regime.
  32. One might possibly include a multiplicative factor in the Richardson–Dushman equation [Eq. (7)] to account for less-than-perfect electron transmission through the sample interface. However, since the factor eventually ends up inside the log term in Eq. (11) it will have an inconsequential effect on the total yield in the space-charge limited regime. In both the computer simulations and the analytic theory perfect transmission has been assumed.
  33. A double exponential fit of the data was used because of its simplicity and apparently reasonable interpolation of the decreasing background in the region of the MPPE features.
  34. Gy. Farkas and Cs. Tóth, Phys. Rev. A 41, 4123 (1990).
    [CrossRef] [PubMed]
  35. R. H. Fowler, Phys. Rev. 38, 45 (1931).
    [CrossRef]
  36. L. A. DuBridge, Phys. Rev. 43, 727 (1943).
    [CrossRef]
  37. By thermally activated terms we refer to terms identically equal to zero at 0 K. These are terms for which mhν< eϕ, where m is an integer. From the EDC’s, however, it is clear that currents from these terms are dominated by the thermally activated currents above an electron temperature of ~0.3 eV.
  38. H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

1992 (1)

1991 (1)

D. C. Anacker and J. L. Erskine, Rev. Sci. Instrum. 62, 1246 (1991).
[CrossRef]

1990 (2)

Gy. Farkas and Cs. Tóth, Phys. Rev. A 41, 4123 (1990).
[CrossRef] [PubMed]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
[CrossRef] [PubMed]

1989 (1)

C. Giarardeau-Montaut and J. P. Giarardeau-Montaut, Appl. Phys. Lett. 55, 24 (1989); Phys. Rev. A 44, 1409 (1991); T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, J. Appl. Phys. 68, 4802 (1990); M. V. Ammosov, J. Opt. Soc. Am. B 8, 2260 (1991); G. Petite, P. Agostini, R. Trainham, E. Mevel, and P. Martin, Phys. Rev. B 45, 12210 (1992).
[CrossRef]

1988 (2)

M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
[CrossRef] [PubMed]

W. M. Wood, G. Focht, and M. C. Downer, Opt. Lett. 13, 984 (1988).
[CrossRef] [PubMed]

1987 (2)

P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
[CrossRef] [PubMed]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

1986 (2)

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[CrossRef]

1985 (1)

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

1984 (1)

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

1983 (1)

G. L. Easley, Phys. Rev. Lett. 51, 2140 (1983); Phys. Rev. B 33, 2144 (1986); H. E. Elsayed-Ali, T. B. Norris, A. M. Pessot, and G. A. Morou, Phys. Rev. Lett. 58, 1212 (1987).
[CrossRef] [PubMed]

1982 (1)

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

1977 (1)

J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
[CrossRef]

1975 (1)

J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
[CrossRef]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

1972 (1)

Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
[CrossRef]

1971 (1)

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

1968 (1)

Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
[CrossRef]

1967 (2)

Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
[CrossRef]

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

1954 (1)

For effects of space-charge fields on steady-state electron beams see, e.g., H. Boersch, Z. Phys. 139, 110 (1954); B. Zimmerman, Advanced Electron Physics (Academic, New York, 1970); W. Knauuer, Optik 54, 211 (1979); E. de Chambost and C. Hennion, Optik 55, 357 (1980); J. M. J. van Leeuwen and G. H. Jansen, Optik 65, 179 (1983).

1943 (1)

L. A. DuBridge, Phys. Rev. 43, 727 (1943).
[CrossRef]

1931 (1)

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

Abeles, J. H.

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

Allen, P. B.

P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
[CrossRef] [PubMed]

Anacker, D. C.

D. C. Anacker and J. L. Erskine, Rev. Sci. Instrum. 62, 1246 (1991).
[CrossRef]

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

Banyai, W. C.

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Bechtel, J. H.

J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
[CrossRef]

Bechtel, J. W.

J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
[CrossRef]

Bloembergen, M.

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Bloembergen, N.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
[CrossRef]

J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
[CrossRef]

Boersch, H.

For effects of space-charge fields on steady-state electron beams see, e.g., H. Boersch, Z. Phys. 139, 110 (1954); B. Zimmerman, Advanced Electron Physics (Academic, New York, 1970); W. Knauuer, Optik 54, 211 (1979); E. de Chambost and C. Hennion, Optik 55, 357 (1980); J. M. J. van Leeuwen and G. H. Jansen, Optik 65, 179 (1983).

Bokor, J.

H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

Buchanan, D. N. E.

S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[CrossRef]

Davey, S. C.

M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
[CrossRef] [PubMed]

DiCenzo, S. B.

S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[CrossRef]

Downer, M. C.

X. Y. Wang and M. C. Downer, Opt. Lett. 17, 1450 (1992).
[CrossRef]

W. M. Wood, G. Focht, and M. C. Downer, Opt. Lett. 13, 984 (1988).
[CrossRef] [PubMed]

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

DuBridge, L. A.

L. A. DuBridge, Phys. Rev. 43, 727 (1943).
[CrossRef]

Easley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

G. L. Easley, Phys. Rev. Lett. 51, 2140 (1983); Phys. Rev. B 33, 2144 (1986); H. E. Elsayed-Ali, T. B. Norris, A. M. Pessot, and G. A. Morou, Phys. Rev. Lett. 58, 1212 (1987).
[CrossRef] [PubMed]

Erskine, J. L.

D. C. Anacker and J. L. Erskine, Rev. Sci. Instrum. 62, 1246 (1991).
[CrossRef]

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Fann, W. S.

H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

Farkas, Gy.

Gy. Farkas and Cs. Tóth, Phys. Rev. A 41, 4123 (1990).
[CrossRef] [PubMed]

Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
[CrossRef]

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
[CrossRef]

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
[CrossRef]

Focht, G.

Focht, G. B.

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Fowler, R. H.

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

Freeman, R. R.

M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
[CrossRef] [PubMed]

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Giarardeau-Montaut, C.

C. Giarardeau-Montaut and J. P. Giarardeau-Montaut, Appl. Phys. Lett. 55, 24 (1989); Phys. Rev. A 44, 1409 (1991); T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, J. Appl. Phys. 68, 4802 (1990); M. V. Ammosov, J. Opt. Soc. Am. B 8, 2260 (1991); G. Petite, P. Agostini, R. Trainham, E. Mevel, and P. Martin, Phys. Rev. B 45, 12210 (1992).
[CrossRef]

Giarardeau-Montaut, J. P.

C. Giarardeau-Montaut and J. P. Giarardeau-Montaut, Appl. Phys. Lett. 55, 24 (1989); Phys. Rev. A 44, 1409 (1991); T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, J. Appl. Phys. 68, 4802 (1990); M. V. Ammosov, J. Opt. Soc. Am. B 8, 2260 (1991); G. Petite, P. Agostini, R. Trainham, E. Mevel, and P. Martin, Phys. Rev. B 45, 12210 (1992).
[CrossRef]

Giesen, K.

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

Groeneveld, R. H. M.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
[CrossRef] [PubMed]

Hage, F.

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

Harrison, W. A.

W. A. Harrison, Electronic Structure and Properties of Solids (Dover, New York, 1989), pp. 490–500.

Himpsel, F. J.

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

Horvath, Gy.

Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
[CrossRef]

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

Ippen, E. P.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

Kaye, G. W. C.

G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants (Longmans, Green, London, 1966).

Kertesz, I.

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

Kertez, I.

Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
[CrossRef]

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
[CrossRef]

Kiss, G.

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

Kock, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.

Laby, T. H.

G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants (Longmans, Green, London, 1966).

Lagendijk, A.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
[CrossRef] [PubMed]

Lee, T. K.

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Lin, P. S.

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

Liu, J. M.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Lynch, D. W.

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.

Marcus, R. B.

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

Melissinos, A. C.

See, e.g., A. C. Melissinos, Experiment in Modern Physics (Academic, San Diego, Calif., 1966), pp. 65–80.

Milchberg, M. M.

M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
[CrossRef] [PubMed]

Naray, Zs.

Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
[CrossRef]

Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
[CrossRef]

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

Papaconstantopolis, D. A.

D. A. Papaconstantopolis, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

Reitze, D. H.

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Riess, H. J.

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

Salour, M. M.

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

Smith, W. L.

J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
[CrossRef]

J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
[CrossRef]

Sprik, R.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
[CrossRef] [PubMed]

Steinmann, W.

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

Storz, R. H.

H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

Tajima, T.

T. Tajima, Computational Plasma Physics (Addison-Wesley, New York, 1989).

Tom, H. W. K.

H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

Tóth, Cs.

Gy. Farkas and Cs. Tóth, Phys. Rev. A 41, 4123 (1990).
[CrossRef] [PubMed]

Varga, P.

Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
[CrossRef]

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

Wang, X. Y.

X. Y. Wang and M. C. Downer, Opt. Lett. 17, 1450 (1992).
[CrossRef]

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

Weaver, J. H.

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.

Weiner, A. M.

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

Wertheim, G. K.

S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[CrossRef]

Wood, W. M.

Yen, R.

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

R. Yen, J. M. Liu, M. Bloembergen, T. K. Lee, J. G. Fujimoto, and M. M. Salour, Appl. Phys. Lett. 40, 185 (1982).
[CrossRef]

R. B. Marcus, A. M. Weiner, J. H. Abeles, and P. S. Lin, Appl. Phys. Lett. 49, 357 (1986); R. W. Schoenlein, J. G. Fujimoto, G. L. Easley, and T. W. Capehart, Phys. Rev. Lett. 61, 2596 (1988).
[CrossRef] [PubMed]

C. Giarardeau-Montaut and J. P. Giarardeau-Montaut, Appl. Phys. Lett. 55, 24 (1989); Phys. Rev. A 44, 1409 (1991); T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, J. Appl. Phys. 68, 4802 (1990); M. V. Ammosov, J. Opt. Soc. Am. B 8, 2260 (1991); G. Petite, P. Agostini, R. Trainham, E. Mevel, and P. Martin, Phys. Rev. B 45, 12210 (1992).
[CrossRef]

Nuovo Cimento Lett. (1)

Gy. Farkas, Gy. Horvath, I. Kertez, and G. Kiss, Nuovo Cimento Lett. 1, 314 (1971).
[CrossRef]

Opt. Commun. (1)

J. H. Bechtel, W. L. Smith, and N. Bloembergen, Opt. Commun. 13, 56 (1975); R. Yen, J. Liu, and N. Bloembergen, Opt. Commun. 35, 277 (1980).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. A (4)

Gy. Farkas, Gy. Horvath, and I. Kertez, Phys. Lett. A 39, 231 (1972); L. A. Lompre, J. Thebault, and Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975).
[CrossRef]

Gy. Farkas, Zs. Naray, and P. Varga, Phys. Lett. A 24, 134 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).
[CrossRef]

Gy. Farkas, I. Kertesz, Zs. Naray, and P. Varga, Phys. Lett. A 24, 572 (1967); E. M. Lofothetis and P. L. Hartman, Phys. Rev. 187, 469 (1969).
[CrossRef]

Gy. Farkas, I. Kertez, and Zs. Naray, Phys. Lett. A 28, 190 (1968).
[CrossRef]

Phys. Rev. (2)

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

L. A. DuBridge, Phys. Rev. 43, 727 (1943).
[CrossRef]

Phys. Rev. A (1)

Gy. Farkas and Cs. Tóth, Phys. Rev. A 41, 4123 (1990).
[CrossRef] [PubMed]

Phys. Rev. B (2)

S. B. DiCenzo, G. K. Wertheim, and D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[CrossRef]

J. W. Bechtel, W. L. Smith, and N. Bloembergen, Phys. Rev. B 15, 4557 (1977).
[CrossRef]

Phys. Rev. Lett. (7)

G. L. Easley, Phys. Rev. Lett. 51, 2140 (1983); Phys. Rev. B 33, 2144 (1986); H. E. Elsayed-Ali, T. B. Norris, A. M. Pessot, and G. A. Morou, Phys. Rev. Lett. 58, 1212 (1987).
[CrossRef] [PubMed]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Phys. Rev. Lett. 58, 1680 (1987).
[CrossRef] [PubMed]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984).
[CrossRef]

M. M. Milchberg, R. R. Freeman, and S. C. Davey, Phys. Rev. Lett. 61, 2364 (1988).
[CrossRef] [PubMed]

K. Giesen, F. Hage, F. J. Himpsel, H. J. Riess, and W. Steinmann, Phys. Rev. Lett. 55, 300 (1985); Phys. Rev. B 33, 5241 (1986); W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).
[CrossRef] [PubMed]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).
[CrossRef] [PubMed]

P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

D. C. Anacker and J. L. Erskine, Rev. Sci. Instrum. 62, 1246 (1991).
[CrossRef]

Z. Phys. (1)

For effects of space-charge fields on steady-state electron beams see, e.g., H. Boersch, Z. Phys. 139, 110 (1954); B. Zimmerman, Advanced Electron Physics (Academic, New York, 1970); W. Knauuer, Optik 54, 211 (1979); E. de Chambost and C. Hennion, Optik 55, 357 (1980); J. M. J. van Leeuwen and G. H. Jansen, Optik 65, 179 (1983).

Zh. Eksp. Teor. Fiz (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

Other (12)

See, e.g., A. C. Melissinos, Experiment in Modern Physics (Academic, San Diego, Calif., 1966), pp. 65–80.

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, “Optical properties of metals, Vol. 1, ” in Physics Data (Fachinfor-mationzentrum, Karlsuhe, West Germany, 1981), Nr 18-1, pp. 223–302.

T. Tajima, Computational Plasma Physics (Addison-Wesley, New York, 1989).

W. C. Banyai, D. C. Anacker, X. Y. Wang, D. H. Reitze, G. B. Focht, M. C. Downer, and J. L. Erskine, in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, Berlin, 1990), p. 116.
[CrossRef]

W. A. Harrison, Electronic Structure and Properties of Solids (Dover, New York, 1989), pp. 490–500.

D. A. Papaconstantopolis, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).

G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants (Longmans, Green, London, 1966).

By contrast, for ns-pulse-induced thermionic emission the results of Lofothetis and Hartman3 on stainless steel show a transient (electron and lattice) temperature of 2800 K induced by 40-ns pulses at an intensity of 5.9 × 106W/cm2. For this case R0would have to be 7 cm for the inequality Δx/(2R0) ≪ 1 to be minimally satisfied, a spot size that is much bigger than that which can be reasonably used in the laboratory. Even if sample and chamber dimensions permitted fruitful use of such a large spot size, the energy/pulse would have to be of the order of 36 J for the temperature rise reported by Lofothetis and Hartman, a quantity not readily obtained with laboratory ns laser sources. For ps-pulse-induced MPPE emission ideas similar to the present can be used to estimate the yield; however, since there is no thermal activation in the MPPE regime, extension of the Richardson–Dushman equation is precluded, and one must use the slightly different formulation presented in Ref. 28, where the size of the space-charge barrier is set equal to the initial kinetic energy (in the direction normal to the surface) of the least energetic electrons that eventually escape. Unfortunately, unlike the model presented here the model of Ref. 28 does not simply extrapolate into the nonspace-charge-limited regime.

One might possibly include a multiplicative factor in the Richardson–Dushman equation [Eq. (7)] to account for less-than-perfect electron transmission through the sample interface. However, since the factor eventually ends up inside the log term in Eq. (11) it will have an inconsequential effect on the total yield in the space-charge limited regime. In both the computer simulations and the analytic theory perfect transmission has been assumed.

A double exponential fit of the data was used because of its simplicity and apparently reasonable interpolation of the decreasing background in the region of the MPPE features.

By thermally activated terms we refer to terms identically equal to zero at 0 K. These are terms for which mhν< eϕ, where m is an integer. From the EDC’s, however, it is clear that currents from these terms are dominated by the thermally activated currents above an electron temperature of ~0.3 eV.

H. W. K. Tom, W. S. Fann, J. Bokor, and R. H. Storz, in Quantum Electronics and Laser Science Conference, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 278–281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Reflectivity of Ag(111), Al(110), and W(100) versus incident laser fluence.

Fig. 2
Fig. 2

Total electron yield per laser pulse versus absorbed energy density in the surface of W(100), Al(110), and Ag(111). Each type of symbol represents data from a different experimental run.

Fig. 3
Fig. 3

Total electron yield per laser pulse versus peak electron temperature during laser heating. The open symbols are experimental data, the thicker curve is from analytic theory, and the thinner curve is a linear fit to results from simulation (filled symbols). Each type of symbol represents data from a different experimental run.

Fig. 4
Fig. 4

Schematic representation of the dynamics of ejected electrons just after laser heating of the metal surface. The real charge is to the right of the metal surface (heavy solid line), and the image charge is to the left. Electrons at the front of the packet have the largest υx and the smallest force acting back toward the surface. Electrons closest to the surface have the smallest υx and the largest force acting back toward the surface. The escape-velocity surface is a mathematical surface that separates those electrons that escape from those that return to the surface.

Fig. 5
Fig. 5

Average space-charge potential experienced by electrons that escape the surface in fs-thermionic emission.

Fig. 6
Fig. 6

Total electron yield per laser pulse versus peak electron temperature during laser heating. The open symbols are experimental data, the solid curve is from analytic theory, and the dotted curve is from the standard Richardson–Dushman formula.

Fig. 7
Fig. 7

Two-pulse TOF spectra. Separation between the two collinear pulses is indicated in each spectrum. The dashed and dotted spectra are obtained with only the leading or the trailing pulse, respectively, incident upon the surface.

Fig. 8
Fig. 8

TOF spectra from Ag(111). The incident fluence (mJ/cm2) for each curve is as follows: (a) 0.90, (b) 1.5, (c) 2.4, (d) 3.2, (e) 3.5, (f) 4.8, (g) 5.8, (h) 7.8, (i) 10.5, (j) 13.7, (k) 29, (1) 37.

Fig. 9
Fig. 9

TOF spectra from Ag(110). The incident fluence (mJ/cm2) for each curve is as follows: (a) 0.87, (b) 1.5, (d) 4.7, (e) 5.4, (f) 10, (g) 15, (h) 24.

Fig. 10
Fig. 10

TOF spectra from W(100). The incident fluence (mJ/cm2) for each curve is as follows: (a) 3.7, (b) 6.2, (c) 9.6, (d) 12.3, (e) 20.5, (f) 31, (g) 40.

Fig. 11
Fig. 11

EDC’s from Ag(111). The incident fluence (mJ/cm2) for each curve is as follows: (a) 0.90, (b) 3.2, (c) 5.8, (d) 13.7, (e) 37.

Fig. 12
Fig. 12

EDC’s from Al(110). The incident fluence (mJ/cm2) for each curve is as follows: (a) 0.87, (b) 2.6, (c) 5.4, (d) 15, (e) 24.

Fig. 13
Fig. 13

EDC’s from W(100). The incident fluence (mJ/cm2) for each curve is as follows: (a) 3.7, (b) 12.3, (c) 40.

Fig. 14
Fig. 14

Comparison of TOF spectra from W(100), Al(110), and Ag(111) for similar increases in electron temperature.

Fig. 15
Fig. 15

EDC’s obtained from TOF spectra shown in Fig. 14.

Fig. 16
Fig. 16

Comparison of experimental EDC’s from W(100) with PIC simulation EDC’s at comparable peak temperatures. Experimental (simulation) peak temperatures are 0.52 (0.5), 0.68 (0.7) and 1.00 (0.95) eV for (a), (b), and (c), respectively.

Fig. 17
Fig. 17

Total electron yield per laser pulses versus peak electron temperature.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ρ image = ρ ( x ) { 1 2 x 2 4 x 2 + [ R ( x ) ] 2 } ,
ρ ( x ) = ρ 0 R 0 2 x 1 2 + R 0 2 ,
C e ( T e ) T e t = κ Δ T e g ( T e T 1 ) + u ( r , t ) t ,
C l ( T l ) T i t = g ( T e T l ) .
C e ( T e ) = d g ( ) f [ , μ ( T e ) , T e ] T e ,
n = d g ( ) f [ , μ ( T e ) , T e ] ,
d N d t = π R 0 2 C ( k B T e ) 2 exp [ ( E f + e ϕ μ ) k B T e ] ,
Φ sc a N esc e 2 R 0 2 x ;
Φ sc a N esc e 2 R 0 .
d N esc d t = π R 1 R 2 C ( k B T e ) 2 × exp ( E f μ + e ϕ + a e 2 N esc / R 1 k B T e ) ,
N esc = k B T e a e 2 / R 1 × log [ 1 + C τ π R 2 a e 2 k B T e exp ( E f μ + e ϕ k B T e ) ] .
V a N esc e R 0 2 D .
N esc = k B T e a e 2 / R 1 log [ 1 + ( 1 + a 1 D + a 2 D 2 ) C τ π R 2 a e 2 k B T e × exp ( E f μ + e ϕ k B T e ) ] ,
D = e h ν u δ τ 1 exp ( h ν k B T e ) ,

Metrics