Abstract

An amplitude-modulated semiconductor laser is used to excite a 9.2-GHz Raman transition in a cesium atomic beam. Separated-field Ramsey fringes as narrow as 1 kHz wide are observed with a high signal-to-noise ratio, even for semiconductor laser linewidths as wide as 20 MHz. These narrow resonances have potential application in the development of high-accuracy, optically excited atomic clocks.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
    [Crossref] [PubMed]
  2. W. Ertmer and S. Penselin, “Cooled atomic beams for frequency standards,” Metrologia 22, 195 (1986).
    [Crossref]
  3. E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
    [Crossref]
  4. J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
    [Crossref]
  5. P. R. Hemmer, S. Ezekiel, and C. C. Leiby, “Stabilization of a microwave oscillator using a resonance Raman transition in a sodium beam,” Opt. Lett. 8, 440 (1983).
    [Crossref] [PubMed]
  6. P. R. Hemmer, G. P. Ontai, and S. Ezekiel, “Precision studies of stimulated resonance Raman interactions in an atomic beam,” J. Opt. Soc. Am. B 3, 219 (1986).
    [Crossref]
  7. P. R. Hemmer, M. S. Shahriar, V. D. Natoli, and S. Ezekiel, “Ac Stark shifts in a two-zone Raman interaction,” J. Opt. Soc. Am. B 6, 1519 (1989).
    [Crossref]
  8. J. Shirley, “Fluorescent light shift in optically pumped cesium standards,” in Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 22.
  9. P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
    [Crossref] [PubMed]
  10. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741 (1992).
    [Crossref] [PubMed]
  11. H. R. Gray, R. M. Whitley, and C. R. Stroud, “Coherent trapping of atomic populations,” Opt. Lett. 3, 218 (1978).
    [Crossref] [PubMed]
  12. P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three level system,” J. Phys. B 15, 3405 (1982).
    [Crossref]
  13. N. F. Ramsey, Molecular Beams (Oxford University, London, 1963), Chap. 5, Sec. 3.
  14. The laser linewidth measurement is limited by the 3-MHz instrumental linewidth of a confocal, scanning Fabry–Perot cavity.
  15. B. E. Bernacki, P. Hemmer, S. P. Smith, and S. Ezekiel, “Alignment-insensitive technique for wideband tuning of an unmodified semiconductor laser,” Opt. Lett. 13, 725 (1988).
    [Crossref] [PubMed]
  16. In general, when the injection current is modulated, the diode laser undergoes both amplitude and frequency modulation. At gigahertz modulation rates, however, we saw evidence only of amplitude modulation.
  17. The discriminants in Fig. 5 appear inverted because they were recorded during the increasing and decreasing legs, respectively, of a triangle-wave scan.
  18. Note that although the probe-zone Raman absorption minima overlap, the bias field is large enough so that the Ramsey fringes corresponding to the field insensitive m= 0, Δm= 0 transition is isolated from the others.
  19. This projected stability can also be compared with the observed fractional stability of 4 × 10−10/τ1/2 in a sodium atomic beam Raman clock, with a linewidth of 2.6 kHz (Ref. 6) and with the observed fractional stability of 2 × 10−10/τ1/2 for an rf-excited sodium fountain clock, with a linewidth of 2 Hz.1
  20. M. Arditi and J. L. Picque, “A cesium beam atomic clock using laser optical pumping. Preliminary tests,” J. Phys. 41, L-379 (1980).
  21. A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

1992 (2)

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741 (1992).
[Crossref] [PubMed]

1989 (2)

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

P. R. Hemmer, M. S. Shahriar, V. D. Natoli, and S. Ezekiel, “Ac Stark shifts in a two-zone Raman interaction,” J. Opt. Soc. Am. B 6, 1519 (1989).
[Crossref]

1988 (1)

1987 (1)

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

1986 (2)

1983 (1)

1982 (2)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three level system,” J. Phys. B 15, 3405 (1982).
[Crossref]

1980 (1)

M. Arditi and J. L. Picque, “A cesium beam atomic clock using laser optical pumping. Preliminary tests,” J. Phys. 41, L-379 (1980).

1978 (1)

Arditi, M.

M. Arditi and J. L. Picque, “A cesium beam atomic clock using laser optical pumping. Preliminary tests,” J. Phys. 41, L-379 (1980).

Bava, E.

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

Berggren, K.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

Bernacki, B. E.

Bigelow, N. P.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

Chu, S.

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741 (1992).
[Crossref] [PubMed]

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

Derbyshire, A.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

DeVoe, R.

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

Drullinger, R. E.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Ertmer, W.

W. Ertmer and S. Penselin, “Cooled atomic beams for frequency standards,” Metrologia 22, 195 (1986).
[Crossref]

Ezekiel, S.

Feldman, M.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Giusfredi, G.

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

Glaze, D. J.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Godone, A.

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

Gray, H. R.

Hemmer, P.

Hemmer, P. R.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

P. R. Hemmer, M. S. Shahriar, V. D. Natoli, and S. Ezekiel, “Ac Stark shifts in a two-zone Raman interaction,” J. Opt. Soc. Am. B 6, 1519 (1989).
[Crossref]

P. R. Hemmer, G. P. Ontai, and S. Ezekiel, “Precision studies of stimulated resonance Raman interactions in an atomic beam,” J. Opt. Soc. Am. B 3, 219 (1986).
[Crossref]

P. R. Hemmer, S. Ezekiel, and C. C. Leiby, “Stabilization of a microwave oscillator using a resonance Raman transition in a sodium beam,” Opt. Lett. 8, 440 (1983).
[Crossref] [PubMed]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Hilliard, D.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Howell, D. A.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Kasevich, M.

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741 (1992).
[Crossref] [PubMed]

Kasevich, M. A.

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

Katz, D. P.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

Knight, P. L.

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three level system,” J. Phys. B 15, 3405 (1982).
[Crossref]

Leiby, C. C.

P. R. Hemmer, S. Ezekiel, and C. C. Leiby, “Stabilization of a microwave oscillator using a resonance Raman transition in a sodium beam,” Opt. Lett. 8, 440 (1983).
[Crossref] [PubMed]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Louis, L. L.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Mervis, J.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

Natoli, V. D.

Novero, C.

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

Ontai, G. P.

Pascaru, I.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Penselin, S.

W. Ertmer and S. Penselin, “Cooled atomic beams for frequency standards,” Metrologia 22, 195 (1986).
[Crossref]

Picard, R. H.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Picque, J. L.

M. Arditi and J. L. Picque, “A cesium beam atomic clock using laser optical pumping. Preliminary tests,” J. Phys. 41, L-379 (1980).

Prentiss, M. G.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

Radmore, P. M.

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three level system,” J. Phys. B 15, 3405 (1982).
[Crossref]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford University, London, 1963), Chap. 5, Sec. 3.

Riis, E.

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

Shahriar, M. S.

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

P. R. Hemmer, M. S. Shahriar, V. D. Natoli, and S. Ezekiel, “Ac Stark shifts in a two-zone Raman interaction,” J. Opt. Soc. Am. B 6, 1519 (1989).
[Crossref]

Shirley, J.

J. Shirley, “Fluorescent light shift in optically pumped cesium standards,” in Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 22.

Shirley, J. H.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Smith, S. P.

Stanciulescu, D.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Stroud, C. R.

Thomas, J. E.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Whitley, R. M.

Willis, C. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Bava, A. Godone, G. Giusfredi, and C. Novero, “The Mg atomic frequency standard,” IEEE J. Quantum Electron. QE-23, 455 (1987).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

M. Arditi and J. L. Picque, “A cesium beam atomic clock using laser optical pumping. Preliminary tests,” J. Phys. 41, L-379 (1980).

J. Phys. B (1)

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three level system,” J. Phys. B 15, 3405 (1982).
[Crossref]

Metrologia (1)

W. Ertmer and S. Penselin, “Cooled atomic beams for frequency standards,” Metrologia 22, 195 (1986).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (4)

M. A. Kasevich, E. Riis, S. Chu, and R. DeVoe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612 (1989).
[Crossref] [PubMed]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

P. R. Hemmer, M. S. Shahriar, M. G. Prentiss, D. P. Katz, K. Berggren, J. Mervis, and N. P. Bigelow, “First observation of forces on three-level atoms in Raman resonant standing-wave optical fields,” Phys. Rev. Lett. 68, 3148 (1992).
[Crossref] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741 (1992).
[Crossref] [PubMed]

Other (8)

J. Shirley, “Fluorescent light shift in optically pumped cesium standards,” in Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 22.

In general, when the injection current is modulated, the diode laser undergoes both amplitude and frequency modulation. At gigahertz modulation rates, however, we saw evidence only of amplitude modulation.

The discriminants in Fig. 5 appear inverted because they were recorded during the increasing and decreasing legs, respectively, of a triangle-wave scan.

Note that although the probe-zone Raman absorption minima overlap, the bias field is large enough so that the Ramsey fringes corresponding to the field insensitive m= 0, Δm= 0 transition is isolated from the others.

This projected stability can also be compared with the observed fractional stability of 4 × 10−10/τ1/2 in a sodium atomic beam Raman clock, with a linewidth of 2.6 kHz (Ref. 6) and with the observed fractional stability of 2 × 10−10/τ1/2 for an rf-excited sodium fountain clock, with a linewidth of 2 Hz.1

N. F. Ramsey, Molecular Beams (Oxford University, London, 1963), Chap. 5, Sec. 3.

The laser linewidth measurement is limited by the 3-MHz instrumental linewidth of a confocal, scanning Fabry–Perot cavity.

A. Derbyshire, R. E. Drullinger, M. Feldman, D. J. Glaze, D. Hilliard, D. A. Howell, L. L. Louis, J. H. Shirley, I. Pascaru, and D. Stanciulescu, “Optically pumped small cesium beam standards: a status report,” Thirty-Ninth Annual Symposium of Frequency Control (Institute of Electrical and Electronics Engineers, New York, 1985), p. 18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Resonance Raman transition in cesium.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Spectrum of (a) amplitude-modulated laser at 4.6 GHz and (b) unmodulated laser.

Fig. 4
Fig. 4

(a) Cesium transitions excited by the two laser sidebands. (b) Single-zone cesium fluorescence corresponding to overlap of the F = 3 ↔ F = 2, 3, 4 and F = 4 ↔ F = 3, 4, 5 transitions, as shown in (a).

Fig. 5
Fig. 5

(a) Single-zone Zeeman-split Raman transitions in cesium (F = 4 intermediate state). (b) Single-zone Raman transition corresponding to the m = 0 ↔ m = 0 magnetic field insensitive clock transition.

Fig. 6
Fig. 6

Ramsey fringes for a 15-cm interaction zone separation and a free-running Hitachi laser (20-MHz intrinsic linewidth).

Fig. 7
Fig. 7

Ramsey fringes for a 15-cm interaction zone separation and an optical feedback stabilized Ortel laser (less than 3-MHz linewidth).

Metrics