Abstract

The influence of a pyroelectric charge-driving force on photorefractive currents is demonstrated experimentally for the first time to my knowledge. Illumination of photorefractive BaTiO3 and KNbO3 crystals by two intersecting coherent light pulses (light wavelength λl = 532 nm) induces thermal gratings. A spatially modulated pyroelectric field arises. Photoexcited carriers move in this field and tend to compensate for it. The pyroelectric field vanishes after termination of the pulse with a characteristic decay time, and redistributed charge remains. Measurements demonstrate that this pyroelectric charge-transport driving force can be much stronger than diffusion for fringe spacings greater than 2 μm. From this new charge-transport mechanism I derive a promising proposal for hologram writing and reading at the same wavelength without erasure.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 195–236.
    [CrossRef]
  2. P. Günter, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 7–73.
    [CrossRef]
  3. V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic grating recording,” Ferroelectrics 18, 81 (1978).
    [CrossRef]
  4. A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
    [CrossRef]
  5. S. Ducharme, “Pyroelectro-optic phase gratings,” Optics Lett. 16, 1791 (1991).
    [CrossRef]
  6. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  7. G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  8. “Standards on piezoelectric crystals,” Proc. Inst. Radio Eng. 37, 1378 (1949).
  9. S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
    [CrossRef]
  10. P. Günter, “Spontaneous polarization and pyroelectric effect in KNbO3,” J. Appl. Phys. 48, 3475 (1977).
    [CrossRef]
  11. K. Buse and E. Krätzig, “Light-induced absorption in BaTiO3and KNbO3generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
    [CrossRef]
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  13. E. Guibelalde, “Coupled wave analysis for out-of-phase mixed thick hologram gratings,” Opt. Quantum Electron. 16, 173 (1984).
    [CrossRef]
  14. R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978).
    [CrossRef]
  15. L. Holtmann, “Der lichtinduzierte ladungstransport in Bariumtitanate- und Kaliumniobat-Kristallen,” Ph.D. dissertation (FB Physik, Universität Osnabrück, Osnabriück, Germany, 1991).
  16. P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285 (1974).
    [CrossRef]
  17. R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).
    [CrossRef]
  18. A. V. Lapitskii, Zh. Obshch. Khim. 22, 379 (1952).
  19. I. Hatta and A. Ikushima, “Temperature dependence of the heat capacity in BaTiO3,” J. Phys. Soc. Jpn. 41, 558 (1976).
    [CrossRef]
  20. A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. 24A, 139 (1967).
  21. E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263 (1974).
    [CrossRef]
  22. Y. Uematsu, “Nonlinear optical properties of KNbO3single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362 (1974).
    [CrossRef]
  23. D. W. Rush, B. M. Dugan, and G. L. Burdge, “Temperature-dependent index-of-refraction changes in BaTiO3,” Opt. Lett. 16, 1295 (1991).
    [CrossRef] [PubMed]
  24. E. Wiesendanger, “Optical properties of KNbO3,” Ferroelectrics 1, 141 (1970).
    [CrossRef]
  25. A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, “Picosecond photorefractive effect in BaTiO3,” Opt. Lett. 12, 501 (1987).
    [CrossRef] [PubMed]
  26. A. R. Johnston and J. M. Weingart, “Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3,” J. Opt. Soc. Am. 55, 828 (1965).
    [CrossRef]
  27. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  28. J. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843 (1984).
    [CrossRef]
  29. R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556 (1988).
    [CrossRef]
  30. H. C. Küllich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407 (1987).
    [CrossRef]
  31. R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
    [CrossRef]
  32. K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
    [CrossRef]
  33. R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
    [CrossRef]
  34. C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
    [CrossRef]
  35. M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

1992 (1)

K. Buse and E. Krätzig, “Light-induced absorption in BaTiO3and KNbO3generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

1991 (3)

S. Ducharme, “Pyroelectro-optic phase gratings,” Optics Lett. 16, 1791 (1991).
[CrossRef]

D. W. Rush, B. M. Dugan, and G. L. Burdge, “Temperature-dependent index-of-refraction changes in BaTiO3,” Opt. Lett. 16, 1295 (1991).
[CrossRef] [PubMed]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

1989 (1)

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

1988 (5)

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556 (1988).
[CrossRef]

G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).
[CrossRef]

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

1987 (2)

1984 (2)

J. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843 (1984).
[CrossRef]

E. Guibelalde, “Coupled wave analysis for out-of-phase mixed thick hologram gratings,” Opt. Quantum Electron. 16, 173 (1984).
[CrossRef]

1979 (1)

M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

1978 (2)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978).
[CrossRef]

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic grating recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

1977 (1)

P. Günter, “Spontaneous polarization and pyroelectric effect in KNbO3,” J. Appl. Phys. 48, 3475 (1977).
[CrossRef]

1976 (1)

I. Hatta and A. Ikushima, “Temperature dependence of the heat capacity in BaTiO3,” J. Phys. Soc. Jpn. 41, 558 (1976).
[CrossRef]

1974 (4)

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263 (1974).
[CrossRef]

Y. Uematsu, “Nonlinear optical properties of KNbO3single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362 (1974).
[CrossRef]

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285 (1974).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

1970 (1)

E. Wiesendanger, “Optical properties of KNbO3,” Ferroelectrics 1, 141 (1970).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

1968 (1)

S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
[CrossRef]

1967 (1)

A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. 24A, 139 (1967).

1965 (1)

1952 (1)

A. V. Lapitskii, Zh. Obshch. Khim. 22, 379 (1952).

1951 (1)

R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).
[CrossRef]

1949 (1)

“Standards on piezoelectric crystals,” Proc. Inst. Radio Eng. 37, 1378 (1949).

Amrhein, P.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Anspoks, A.

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

Boggess, T. F.

Bohnert, K.

Brost, G. A.

Burdge, G. L.

Buse, K.

K. Buse and E. Krätzig, “Light-induced absorption in BaTiO3and KNbO3generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

Camlibel, I.

S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
[CrossRef]

DiDomenico, M.

S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
[CrossRef]

Ducharme, S.

S. Ducharme, “Pyroelectro-optic phase gratings,” Optics Lett. 16, 1791 (1991).
[CrossRef]

Dugan, B. M.

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Gaffar, M. A.

M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Guibelalde, E.

E. Guibelalde, “Coupled wave analysis for out-of-phase mixed thick hologram gratings,” Opt. Quantum Electron. 16, 173 (1984).
[CrossRef]

Günter, P.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

P. Günter, “Spontaneous polarization and pyroelectric effect in KNbO3,” J. Appl. Phys. 48, 3475 (1977).
[CrossRef]

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285 (1974).
[CrossRef]

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

P. Günter, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 7–73.
[CrossRef]

Hatta, I.

I. Hatta and A. Ikushima, “Temperature dependence of the heat capacity in BaTiO3,” J. Phys. Soc. Jpn. 41, 558 (1976).
[CrossRef]

Holtmann, L.

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

L. Holtmann, “Der lichtinduzierte ladungstransport in Bariumtitanate- und Kaliumniobat-Kristallen,” Ph.D. dissertation (FB Physik, Universität Osnabrück, Osnabriück, Germany, 1991).

Ikushima, A.

I. Hatta and A. Ikushima, “Temperature dependence of the heat capacity in BaTiO3,” J. Phys. Soc. Jpn. 41, 558 (1976).
[CrossRef]

Itskovskii, M. A.

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic grating recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

Johnston, A. R.

Klein, M. B.

M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 195–236.
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Krätzig, E.

K. Buse and E. Krätzig, “Light-induced absorption in BaTiO3and KNbO3generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

J. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843 (1984).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978).
[CrossRef]

Krumins, A.

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

Küllich, H. C.

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

H. C. Küllich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407 (1987).
[CrossRef]

Lapitskii, A. V.

A. V. Lapitskii, Zh. Obshch. Khim. 22, 379 (1952).

Maillard, A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Mante, A. J. H.

A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. 24A, 139 (1967).

Matull, R.

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556 (1988).
[CrossRef]

Mebed, M. M.

M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

Medrano, C.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Mire, C. D.

Motes, R. A.

Mullen, R. A.

Odoulov, S. G.

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

Orlowski, R.

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978).
[CrossRef]

Pohl, D. W.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Rhodes, R. G.

R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Rotgé, J. R.

Rupp, R. A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556 (1988).
[CrossRef]

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

Rush, D. W.

Saknidy, S.

M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

Schürk, U.

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

Seglins, J.

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

Smirl, A. L.

Uematsu, Y.

Y. Uematsu, “Nonlinear optical properties of KNbO3single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362 (1974).
[CrossRef]

Vaivods, P.

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

Valley, G. C.

Vinetskii, V. L.

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic grating recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

Voit, E.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Volger, J.

A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. 24A, 139 (1967).

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Vormann, J.

J. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843 (1984).
[CrossRef]

Walter, J.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Weingart, J. M.

Wemple, S. H.

S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
[CrossRef]

Wiesendanger, E.

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263 (1974).
[CrossRef]

E. Wiesendanger, “Optical properties of KNbO3,” Ferroelectrics 1, 141 (1970).
[CrossRef]

Acta Crystallogr. (1)

R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).
[CrossRef]

Appl. Phys. A (1)

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Ferroelectrics (4)

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic grating recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

A. Krumins, A. Anspoks, S. G. Odoulov, J. Seglins, and P. Vaivods, “Thermal holograms in doped ferroelectric SBN crystals,” Ferroelectrics 80, 277 (1988).
[CrossRef]

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263 (1974).
[CrossRef]

E. Wiesendanger, “Optical properties of KNbO3,” Ferroelectrics 1, 141 (1970).
[CrossRef]

Ferroelectrics Lett. (1)

R. A. Rupp, H. C. Küllich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics Lett. 8, 25 (1988).
[CrossRef]

J. Appl. Phys. (2)

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

P. Günter, “Spontaneous polarization and pyroelectric effect in KNbO3,” J. Appl. Phys. 48, 3475 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

S. H. Wemple, M. DiDomenico, and I. Camlibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797 (1968).
[CrossRef]

J. Phys. D (1)

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556 (1988).
[CrossRef]

J. Phys. Soc. Jpn. (1)

I. Hatta and A. Ikushima, “Temperature dependence of the heat capacity in BaTiO3,” J. Phys. Soc. Jpn. 41, 558 (1976).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Uematsu, “Nonlinear optical properties of KNbO3single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362 (1974).
[CrossRef]

Opt. Commun. (3)

H. C. Küllich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407 (1987).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285 (1974).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

K. Buse and E. Krätzig, “Light-induced absorption in BaTiO3and KNbO3generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

Opt. Quantum Electron. (1)

E. Guibelalde, “Coupled wave analysis for out-of-phase mixed thick hologram gratings,” Opt. Quantum Electron. 16, 173 (1984).
[CrossRef]

Optics Lett. (1)

S. Ducharme, “Pyroelectro-optic phase gratings,” Optics Lett. 16, 1791 (1991).
[CrossRef]

Phys. Lett. (1)

A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. 24A, 139 (1967).

Proc. Inst. Radio Eng. (1)

“Standards on piezoelectric crystals,” Proc. Inst. Radio Eng. 37, 1378 (1949).

Rev. Int. Hautes Temper. Refract. (1)

M. M. Mebed, M. A. Gaffar, and S. Saknidy, “Thermal properties of KNbO3crystals in the temperature range 350–700 K,” Rev. Int. Hautes Temper. Refract. 16, 340 (1979).

Solid State Commun. (2)

J. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843 (1984).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978).
[CrossRef]

Zh. Obshch. Khim. (1)

A. V. Lapitskii, Zh. Obshch. Khim. 22, 379 (1952).

Other (4)

L. Holtmann, “Der lichtinduzierte ladungstransport in Bariumtitanate- und Kaliumniobat-Kristallen,” Ph.D. dissertation (FB Physik, Universität Osnabrück, Osnabriück, Germany, 1991).

M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 195–236.
[CrossRef]

P. Günter, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 7–73.
[CrossRef]

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive index modulated by means of the electro-optic (Δn, Δnpyro) and the thermo-optic (ΔnT) effects. The entire electric field consists of a space-charge field caused by charge redistribution between impurities and by a pyroelectric part. Diffusion and drift in the pyroelectric field lead to space-charge field contributions. However, the components Δnsc,diff and Δnsc,pyro remain constant after termination of the pulse illumination (t = 0). The thermal grating decays after termination of the light pulse and thus do also Δnpyro and ΔnT. Amount (Δn) and phase of the total refractive-index amplitude are shown immediately after a light pulse (t = 0) and later (t = ∞). For simplicity, the diffusion contribution is neglected in the calculations.

Fig. 2
Fig. 2

Illustration of the experimental setup (schematic). Two coherent pulse beams (light wavelength λl = 532 nm, pulse duration tp = 20 ns) intersect inside a sample. Pyroelectric detectors monitor the transmitted pulse energies. A weak He–Ne cw beam enters the crystal under the Bragg angle and reads out the written hologram. Photodiodes measure the diffracted (Id) and transmitted (It) intensities in combination with a storage oscilloscope.

Fig. 3
Fig. 3

Refractive-index amplitude versus time after a holographic writing pulse (t = 0, pulse intensity 240 GW m−2) for various polarizations of the cw reading light (||c, ⊥c) and fringe spacings (Λ = 1.2 μm, Λ = 10.5 μm). The solid curves represent measurements, and the dashed curves are fitted (least-squares fit) by using Eq. (17). Assuming only diffusion, I calculate the refractive-index changes marked by dotted lines.

Fig. 4
Fig. 4

Refractive-index amplitude versus time after a holographic writing pulse (t = 0, pulse intensity 320 GW m−2) for different polarizations of the cw reading light (||c, ||b) and fringe spacings (Λ = 1.1 μm, Λ = 9.0 μm). The solid curves represent measurements, and the dashed lines are fitted (least-squares fit) by using Eq. (17). Assuming only diffusion, I calculate the refractive-index changes marked by dotted lines.

Fig. 5
Fig. 5

Explanation of the measured Δn(t) dynamics in terms of pyroelectric and thermo-optic contributions. The symbols are explained in the text.

Fig. 6
Fig. 6

Stationary refractive-index change Δnsc = Δn(t = ∞), transient refractive-index contribution Δnthermal(=Δn(t = 0) − Δn(t = ∞) if diffusion is negligible) and time constant τΛ of the Δn(t) dynamics versus fringe spacing obtained from curves like those in Fig. 3. The dashed curve is a τΛ ~ Λ2 fit.

Fig. 7
Fig. 7

Stationary refractive-index change Δnsc = Δn(t = ∞), transient refractive-index contribution Δnthermal(=Δn(t = 0) − Δn(t = ∞) if diffusion is negligible), and time constant τΛ of the Δn(t) dynamics versus fringe spacing obtained from curves like those in Fig. 4. The dashed curve is a τΛ ~ Λ2 fit.

Tables (2)

Tables Icon

Table 1 Size, Doping, and Absorption and Electro-optic Coefficients of the Crystalsa

Tables Icon

Table 2 Material Constants of BaTiO3 and KNbO3a

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = I { 1 + m cos [ ( 2 π / Λ ) z ] }
Δ T ( t ) = Δ T st { 1 - exp [ - ( t + t p ) / τ Λ ] } ,             - t p t 0 ,
Δ T st = m I α Λ 2 λ t 4 π 2 ,             τ Λ = ρ c p Λ 2 λ t 4 π 2 .
Δ T ( t = 0 ) = m I α t p ρ c p .
Δ T ( t ) = Δ T ( t = 0 ) exp ( - t / τ Λ ) ,             t 0.
E pyro ( t ) = - 1 0 P s T Δ T ( t ) ,
j = e μ N ( E sc , pyro + E pyro ) .
E sc , pyro = - E pyro , st { ( 1 - τ / τ Λ ) - 1 [ 1 - exp ( - t p / τ Λ ) ] + [ 1 - ( 1 - τ / τ Λ ) - 1 ] [ 1 - exp ( - t p / τ ) ] } ,
τ = 0 e μ N 0 .
E sc , pyro = - E pyro , st t p τ Λ = - E pyro ( t = 0 ) = m I α t p P s / T ρ c p 0 .
E sc , pyro = - E pyro , st ( t p / τ ) .
E = E pyro + E sc , pyro + i E sc , diff ,
Δ n = - 0.5 r 13 , 23 , 33 n a , b , c 3 E ,
Δ n E = Δ n pyro + Δ n sc , pyro + i Δ n sc , diff .
Δ n T = n a , b , c T Δ T .
Δ n ˜ = Δ n T + Δ n E = Δ n T + Δ n pyro + Δ n sc , pyro + i Δ n sc , diff .
Δ n = Δ n ˜ = { [ Δ n thermal exp ( - t / τ Λ ) + Δ n sc , pyro ] 2 + Δ n sc , diff 2 } 1 / 2 ,
Δ n thermal = Δ n T ( t = 0 ) + Δ n pyro ( t = 0 ) .
Δ n pyro , a , b , c Δ T = n pyro , a , b , c T = - 0.5 r 13 , 23 , 33 n a , b , c 3 1 33 0 P s T .
η = I d / ( I d + I t ) ,
I d = exp ( - α d / cos Θ ) { sin 2 [ D ( a + C ) 1 / 2 ] + sinh 2 [ D ( a - C ) 1 / 2 ] } ( A + 2 B sin Φ ) / a ,
I t = exp ( - α d / cos Θ ) { cos 2 [ D ( a + C ) 1 / 2 ] + sinh 2 [ D ( a - C ) 1 / 2 ] } ,
A = ( π Δ n λ l ) 2 + ( Δ α 4 ) 2 ,             B = π Δ n λ l Δ α 4 ,
C = ( π Δ n λ l ) 2 + ( Δ α 4 ) 2 ,             D = d 2 cos Θ ,
a = ( A 2 - 4 B 2 sin 2 Φ ) 1 / 2 .
η ( Φ = 0 ) 0.5 [ η ( + Φ ) + η ( - Φ ) ] .
a l i = 1 d ln ( I ˜ t I d + I t ) ,

Metrics