Abstract

Experimental investigations of stimulated Brillouin scattering in two cascaded single-mode optical fibers with different Brillouin shifts are presented. A fiber Brillouin laser consisting of these two cascaded fibers is demonstrated. The output of such a laser exhibits two frequencies corresponding to the Brillouin-shifted frequencies of two individual fibers.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  2. D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” Opt. Commun. 4, 10–19 (1983).
  3. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
    [CrossRef]
  4. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
    [CrossRef]
  5. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7, 509–511 (1982).
    [CrossRef] [PubMed]
  6. R. Kadiwar and I. P. Giles, “Optical fiber Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989).
    [CrossRef]
  7. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
    [CrossRef]
  8. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [CrossRef] [PubMed]
  9. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
    [CrossRef]
  10. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
    [CrossRef]
  11. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
    [CrossRef]
  12. C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
    [CrossRef]
  13. C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
    [CrossRef]
  14. C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).
  15. B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.
  16. J. Kushibiki and N. Chubachi, “Material characterization by line focus beam acoustic microscope,” IEEE Trans. Sonics Ultrason. SU-32, 189–212 (1985).
    [CrossRef]
  17. N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2doped core single mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
    [CrossRef]
  18. R. H. Stolen, “Nonlinear properties of optical fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 125–150.
    [CrossRef]
  19. K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single mode fibers,” Electron. Lett. 19, 712–714 (1983).
    [CrossRef]

1992 (1)

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

1991 (1)

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

1990 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

1989 (4)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

R. Kadiwar and I. P. Giles, “Optical fiber Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989).
[CrossRef]

N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2doped core single mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
[CrossRef]

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

1988 (1)

1986 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
[CrossRef]

1985 (1)

J. Kushibiki and N. Chubachi, “Material characterization by line focus beam acoustic microscope,” IEEE Trans. Sonics Ultrason. SU-32, 189–212 (1985).
[CrossRef]

1983 (2)

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” Opt. Commun. 4, 10–19 (1983).

1982 (1)

1976 (1)

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

1972 (1)

Abe, K.

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Adler, E. L.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

Azuma, Y.

Bagley, B. G.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Bonnell, L.

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Bussiere, J. F.

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

Chodorow, M.

Chraplyvy, A. R.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
[CrossRef]

Chubachi, N.

J. Kushibiki and N. Chubachi, “Material characterization by line focus beam acoustic microscope,” IEEE Trans. Sonics Ultrason. SU-32, 189–212 (1985).
[CrossRef]

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” Opt. Commun. 4, 10–19 (1983).

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Derosier, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Giles, I. P.

R. Kadiwar and I. P. Giles, “Optical fiber Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Horiguchi, T.

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Jen, C. J.

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Jen, C. K.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Jopson, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Kadiwar, R.

R. Kadiwar and I. P. Giles, “Optical fiber Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

Kurkjian, C. R.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Kushibiki, J.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

J. Kushibiki and N. Chubachi, “Material characterization by line focus beam acoustic microscope,” IEEE Trans. Sonics Ultrason. SU-32, 189–212 (1985).
[CrossRef]

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Li, L.

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

Lowe, R.

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

Mao, X. P.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Mitchell, J. W.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Neron, C.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Nicolle, A.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

Okamoto, K.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Petermann, K.

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

Peterson, G. E.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Shang, A.

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

Shaw, H. J.

Shibata, N.

Smith, R. G.

Stokes, L. F.

Stolen, R. H.

R. H. Stolen, “Nonlinear properties of optical fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 125–150.
[CrossRef]

Tateda, M.

Tkach, R. W.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
[CrossRef]

Tynes, A. R.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Wang, Z.

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

C. K. Jen, C. Neron, J. F. Bussiere, L. Li, R. Lowe, and J. Kushibiki, “Characterization of cladded fibers using acoustic microscopy,” Appl. Phys. Lett. 55, 2485–2487 (1989).
[CrossRef]

C. K. Jen, Z. Wang, A. Nicolle, C. Neron, E. L. Adler, and J. Kushibiki, “Acoustic graded-index lens,” Appl. Phys. Lett. 59, 1398–1400 (1991).
[CrossRef]

Electron. Lett. (4)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterization,” Electron. Lett. 22, 1011–1013 (1986).
[CrossRef]

K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single mode fibers,” Electron. Lett. 19, 712–714 (1983).
[CrossRef]

R. Kadiwar and I. P. Giles, “Optical fiber Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

J. Kushibiki and N. Chubachi, “Material characterization by line focus beam acoustic microscope,” IEEE Trans. Sonics Ultrason. SU-32, 189–212 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” Opt. Commun. 4, 10–19 (1983).

Opt. Lett. (3)

Other (3)

R. H. Stolen, “Nonlinear properties of optical fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 125–150.
[CrossRef]

C. J. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. (to be published).

B. G. Bagley, C. R. Kurkjian, J. W. Mitchell, G. E. Peterson, and A. R. Tynes, “Materials, properties and choices,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), p. 188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a SBS measurement setup for fibers A and B.

Fig. 2
Fig. 2

Measured Stokes-wave Brillouin shifts for fibers A and B.

Fig. 3
Fig. 3

Schematic diagram of a SBS fiber laser measurement setup.

Fig. 4
Fig. 4

Output frequency of a fiber Brillouin laser consisting of fiber A and fiber B.

Tables (2)

Tables Icon

Table 1 Δn%, ΔVLSAW%, and ΔVLSSCW% versus Dopant Concentration (wt. %)

Tables Icon

Table 2 Properties and SBS Measurement Results of Two SMOF’s

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = 21 ( γ A eff g B L eff ) ( Δ f B + Δ f L Δ f B )
L eff = 1 - exp ( - α L ) α

Metrics