Abstract

Isotope shift measurements are reported for more than 300 zirconium lines in the spectral range 14 160–18 660 cm−1. Most of these lines are predicted transitions between known energy levels, although several of them have not yet been reported. The zirconium vapor is produced in a homemade hollow-cathode lamp, and the atomic transitions are excited by a ring dye laser (dyes used: DCM, Rhodamine 6G, and Rhodamine 110). Light absorption in the vapor is detected by using the optogalvanic effect when either one or the other of two sub-Doppler techniques (intermodulation or saturation) is used, depending on the intensity of the line under study. Numerical values aside, our results also show that the optogalvanic effect is a useful tool for systematic high-resolution spectroscopic investigations.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Kiess and H. K. Kiess, “The structure of the arc spectrum of zirconium,” Natl. Bur. Stand. J. Res. 6, 621 (1931).
    [Crossref]
  2. W. F. Meggers and C. C. Kiess, “Infra-red arc spectra photographed with xenocyanine,” Natl. Bur. Stand. J. Res. 9, 309 (1932).
    [Crossref]
  3. W. E. W. Howe, “New lines in the spectra of zirconium,” J. Opt. Soc. Am. 48, 28 (1958).
    [Crossref]
  4. S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
    [Crossref]
  5. I. P. Dontsov, “Isotopic shift in the spectrum of Zr i,” Opt. Spectrosc. 6, 1 (1959).
  6. K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
    [Crossref]
  7. O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
    [Crossref]
  8. G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr i des transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
    [Crossref]
  9. C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
    [Crossref]
  10. P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
    [Crossref]
  11. G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492 (1988).
    [Crossref]
  12. J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
    [Crossref]
  13. B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
    [Crossref]
  14. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, New York, 1964).
  15. D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr i,” Opt. Commun. 67, 209 (1988).
    [Crossref]

1990 (1)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
[Crossref]

1988 (3)

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr i,” Opt. Commun. 67, 209 (1988).
[Crossref]

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492 (1988).
[Crossref]

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

1987 (1)

C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[Crossref]

1986 (2)

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr i des transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

1979 (1)

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

1978 (1)

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

1963 (1)

K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
[Crossref]

1959 (1)

I. P. Dontsov, “Isotopic shift in the spectrum of Zr i,” Opt. Spectrosc. 6, 1 (1959).

1958 (1)

1932 (1)

W. F. Meggers and C. C. Kiess, “Infra-red arc spectra photographed with xenocyanine,” Natl. Bur. Stand. J. Res. 9, 309 (1932).
[Crossref]

1931 (1)

C. C. Kiess and H. K. Kiess, “The structure of the arc spectrum of zirconium,” Natl. Bur. Stand. J. Res. 6, 621 (1931).
[Crossref]

Barbieri, B.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
[Crossref]

Beverini, N.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
[Crossref]

Bourauel, C.

C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[Crossref]

Bourne, O. L.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Büttgenbach, S.

C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[Crossref]

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Chevalier, G.

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492 (1988).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr i des transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, New York, 1964).

Dicke, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Dontsov, I. P.

I. P. Dontsov, “Isotopic shift in the spectrum of Zr i,” Opt. Spectrosc. 6, 1 (1959).

Ferguson, A. I.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Gagné, J.-M.

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492 (1988).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr i des transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

Gebauer, H.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Goldsmith, J. E. M.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Gough, D. S.

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr i,” Opt. Commun. 67, 209 (1988).
[Crossref]

Hackett, P. A.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Hannaford, P.

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr i,” Opt. Commun. 67, 209 (1988).
[Crossref]

Heilig, K.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
[Crossref]

Howe, W. E. W.

Humphries, M. R.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Jackson, D. J.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Kiess, C. C.

W. F. Meggers and C. C. Kiess, “Infra-red arc spectra photographed with xenocyanine,” Natl. Bur. Stand. J. Res. 9, 309 (1932).
[Crossref]

C. C. Kiess and H. K. Kiess, “The structure of the arc spectrum of zirconium,” Natl. Bur. Stand. J. Res. 6, 621 (1931).
[Crossref]

Kiess, H. K.

C. C. Kiess and H. K. Kiess, “The structure of the arc spectrum of zirconium,” Natl. Bur. Stand. J. Res. 6, 621 (1931).
[Crossref]

Kuhnen, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Lawler, J. E.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Meggers, W. F.

W. F. Meggers and C. C. Kiess, “Infra-red arc spectra photographed with xenocyanine,” Natl. Bur. Stand. J. Res. 9, 309 (1932).
[Crossref]

Mitchell, S. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Morrison, H. D.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

Pianarosa, P.

Rayner, D. M.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

Rupprecht, W.

C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[Crossref]

Sasso, A.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
[Crossref]

Schawlow, A. L.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Schmitz, K.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
[Crossref]

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, New York, 1964).

Simard, B.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

Steudel, A.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
[Crossref]

Träber, F.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyper-fine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 1409 (1988).
[Crossref]

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492 (1988).
[Crossref]

Natl. Bur. Stand. J. Res. (2)

C. C. Kiess and H. K. Kiess, “The structure of the arc spectrum of zirconium,” Natl. Bur. Stand. J. Res. 6, 621 (1931).
[Crossref]

W. F. Meggers and C. C. Kiess, “Infra-red arc spectra photographed with xenocyanine,” Natl. Bur. Stand. J. Res. 9, 309 (1932).
[Crossref]

Opt. Commun. (3)

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr i des transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr i,” Opt. Commun. 67, 209 (1988).
[Crossref]

Opt. Spectrosc. (1)

I. P. Dontsov, “Isotopic shift in the spectrum of Zr i,” Opt. Spectrosc. 6, 1 (1959).

Phys. Rev. Lett. (1)

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Rev. Mod. Phys. (1)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603 (1990).
[Crossref]

Z. Phys. (1)

K. Heilig, K. Schmitz, and A. Steudel, “Isotopieverschiebung im Zirkon i-Spektrum,” Z. Phys. 176, 120 (1963).
[Crossref]

Z. Phys. A (1)

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Z. Phys. D (1)

C. Bourauel, W. Rupprecht, and S. Büttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[Crossref]

Other (1)

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, New York, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for intermodulated optogalvanic detection: 1,3, dye lasers; 2,4, Ar+ lasers; 5, beam expanders; 6, mirrors; 7, hollow-cathode lamp; 8, power supply; 9, chopper; 10, oscilloscope; 11, lock-in amplifier; 12, interferometer; 13, controller; 14, diaphragm; 15, strip-chart recorder; 16, polarization rotator; and 17, beam splitter.

Fig. 2
Fig. 2

Zirconium line profile measured with intermodulated optogalvanic detection (line a 3 F 2 - z 5 G 2 ’).

Fig. 3
Fig. 3

Zirconium line profile measured with saturated optogalvanic detection (line a 5 F 2 - y 3 D 2 ).

Fig. 4
Fig. 4

Profile of the zirconium b 3 F 3 - w 4 F 4 transition measured with intermodulated optogalvanic detection.

Fig. 5
Fig. 5

Profile of the zirconium line at 14 804.76 cm−1 measured with intermodulated optogalvanic detection.

Fig. 6
Fig. 6

Profile of the zirconium a 5 F 2 - y 3 D 2 transition measured with intermodulated optogalvanic detection.

Tables (1)

Tables Icon

Table 1 Zirconium Isotope Shifts

Metrics