Abstract

The photonic crystal is investigated as a substrate material for planar antennas in the microwave and millimeter-wave bands. Experimental results are presented for a bow-tie antenna on a (111)-oriented face-centered-cubic photonic-crystal substrate with a band gap between approximately 13 and 16 GHz. When driven at 13.2 GHz, the antenna radiates predominantly into the air rather than into the substrate. This suggests that highly efficient planar antennas can be made on photonic-crystal regions fabricated in semiconductor substrates such as GaAs.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch and T. J. Gmitter, J. Opt. Soc. Am. A 7, 1792 (1990).
    [Crossref]
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  3. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  4. G. Kirizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
    [Crossref]
  5. A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
    [Crossref]
  6. E. R. Brown, “Millimeter-wave applications of photon crystals,” presented at the Workshop on Photonic Bandgap Structures, sponsored by the U.S. Army Research Office, January 28–30, 1992, Park City, Utah.
  7. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, in Infrared and Millimeter Waves (Academic, Orlando, Fla., 1983), Vol. 10, p. 1.
  8. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
    [Crossref]
  9. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
    [Crossref] [PubMed]
  10. D. B. Rutledge and M. S. Muha, IEEE Trans. Antennas Propag. AP-30, 535 (1982).
    [Crossref]

1991 (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

1990 (2)

E. Yablonovitch and T. J. Gmitter, J. Opt. Soc. Am. A 7, 1792 (1990).
[Crossref]

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

1988 (1)

G. Kirizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[Crossref]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

1982 (1)

D. B. Rutledge and M. S. Muha, IEEE Trans. Antennas Propag. AP-30, 535 (1982).
[Crossref]

Beebe, E. D.

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

Brown, E. R.

E. R. Brown, “Millimeter-wave applications of photon crystals,” presented at the Workshop on Photonic Bandgap Structures, sponsored by the U.S. Army Research Office, January 28–30, 1992, Park City, Utah.

Genack, A. Z.

G. Kirizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[Crossref]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

E. Yablonovitch and T. J. Gmitter, J. Opt. Soc. Am. A 7, 1792 (1990).
[Crossref]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Kasilingam, D. P.

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, in Infrared and Millimeter Waves (Academic, Orlando, Fla., 1983), Vol. 10, p. 1.

Kirizki, G.

G. Kirizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[Crossref]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

Lin, P. S. D.

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

Muha, M. S.

D. B. Rutledge and M. S. Muha, IEEE Trans. Antennas Propag. AP-30, 535 (1982).
[Crossref]

Neikirk, D. P.

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, in Infrared and Millimeter Waves (Academic, Orlando, Fla., 1983), Vol. 10, p. 1.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

Rutledge, D. B.

D. B. Rutledge and M. S. Muha, IEEE Trans. Antennas Propag. AP-30, 535 (1982).
[Crossref]

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, in Infrared and Millimeter Waves (Academic, Orlando, Fla., 1983), Vol. 10, p. 1.

Scherer, A.

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

van der Gaag, B. P.

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

E. Yablonovitch and T. J. Gmitter, J. Opt. Soc. Am. A 7, 1792 (1990).
[Crossref]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

IEEE Trans. Antennas Propag. (1)

D. B. Rutledge and M. S. Muha, IEEE Trans. Antennas Propag. AP-30, 535 (1982).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

A. Scherer, B. P. van der Gaag, E. D. Beebe, and P. S. D. Lin, J. Vac. Sci. Technol. B 8, 28 (1990).
[Crossref]

Phys. Rev. B (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).
[Crossref]

Phys. Rev. Lett. (4)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

G. Kirizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988).
[Crossref]

Other (2)

E. R. Brown, “Millimeter-wave applications of photon crystals,” presented at the Workshop on Photonic Bandgap Structures, sponsored by the U.S. Army Research Office, January 28–30, 1992, Park City, Utah.

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, in Infrared and Millimeter Waves (Academic, Orlando, Fla., 1983), Vol. 10, p. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-sectional view of generic planar antenna on uniform-dielectric substrate. (b) Cross-sectional view of generic planar antenna on a photonic-crystal substrate, showing expulsion of radiation at frequencies in the band gap.

Fig. 2
Fig. 2

Experimental setup for measuring radiation patterns from planar bow-tie antennas on photonic-crystal or uniform substrates.

Fig. 3
Fig. 3

(a) Radiation pattern at 13.2 GHz measured over 360° in the E plane for the bow-tie antenna on a photonic-crystal substrate (radial scale linear in power). (b) Radiation pattern measured in the H plane under the same conditions as in (a).

Fig. 4
Fig. 4

(a) Radiation pattern at 13.2 GHz measured over 360° in the E plane for the bow-tie antenna on a uniform-dielectric substrate. The radial magnitude scale is kept the same as in Fig. 3. (b) Radiation pattern measured in the H plane under the same conditions as in (a).

Fig. 5
Fig. 5

Possible design of a planar dipole antenna lying over the photonic-crystal region of a semi-insulating GaAs substrate. The top surface and the two visible sides of the photonic-crystal region are assumed to be equivalent (100) facets of an fcc lattice.

Metrics