Abstract

The extension of the conventional finite-difference time-domain solution of the full vector Maxwell equations to modeling femtosecond optical-pulse propagation in a nonlinear Kerr medium that exhibits a finite response time is presented. Numerical results are given for nonlinear self-focusing in two space dimensions and time; the technique can be generalized to three space dimensions with adequate computer resources. Comparisons with previously reported and anticipated results are made. Several novel phenomena that are not observed with scalar models of self-focusing and that can be attributed only to the complete solution of the vector Maxwell equations are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations

Peter M. Goorjian and Yaron Silberberg
J. Opt. Soc. Am. B 14(11) 3253-3260 (1997)

General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics

Jethro H. Greene and Allen Taflove
Opt. Express 14(18) 8305-8310 (2006)

Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film

Hyun-Ho Lee, Kyu-Min Chae, Sang-Youp Yim, and Seung-Han Park
Opt. Express 12(12) 2603-2609 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription