Abstract

The extension of the conventional finite-difference time-domain solution of the full vector Maxwell equations to modeling femtosecond optical-pulse propagation in a nonlinear Kerr medium that exhibits a finite response time is presented. Numerical results are given for nonlinear self-focusing in two space dimensions and time; the technique can be generalized to three space dimensions with adequate computer resources. Comparisons with previously reported and anticipated results are made. Several novel phenomena that are not observed with scalar models of self-focusing and that can be attributed only to the complete solution of the vector Maxwell equations are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article
Related Articles
Body-of-revolution finite-difference time-domain modeling of space–time focusing by a three-dimensional lens

David B. Davidson and Richard W. Ziolkowski
J. Opt. Soc. Am. A 11(4) 1471-1490 (1994)

Transverse modulational instability of collinear waves

G. G. Luther and C. J. McKinstrie
J. Opt. Soc. Am. B 7(6) 1125-1141 (1990)

Nonlinear finite-difference time-domain modeling of linear and nonlinear corrugated waveguides

Richard W. Ziolkowski and Justin B. Judkins
J. Opt. Soc. Am. B 11(9) 1565-1575 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription