Abstract

We have developed mirrorless quasi-monochromatic laser sources made of stoichiometric neodymium compounds (Nd0.75:La0.25P4O15 and NdCl3· 6H2O) pumped by nanosecond laser pulses. We find that short subnanosecond and narrow-bandwidth (0.15-nm) pulses are generated in both compounds when they are pumped at high intensities. This emission is spatially incoherent as shown by a speckle statistics analysis. Its origin is discussed in terms of collective effects. This shows that poor optical materials with strongly quenched emission may be useful for generating incoherent short pulses.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the special issue on solid state lasers, IEEE J. Quantum Electron. 24, 881 (1988).
  2. H. P. Weber, “Review on Nd pentaphosphate lasers,” Opt. Quantum Electron. 7, 431 (1975).
    [CrossRef]
  3. R. H. Lehmberg and S. P. Obenschain, “Use of spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27 (1983).
    [CrossRef]
  4. M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
    [CrossRef]
  5. S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
    [CrossRef]
  6. F. Auzel, “The auto-extinction of Nd3+: fundamental mechanism and predictive criterion of simple laser material,” Mat. Res. Bull. 14, 223 (1979).
    [CrossRef]
  7. J. Dexpert-Ghys and F. Auzel, “Existence of cooperative absorption lines for Yb-(OH-OD) pairs,” J. Chem. Phys. 80, 4003 (1984).
    [CrossRef]
  8. Y. Haas and G. Stein, “Radiative and radiationless transitions in solution of rare earth ions: vibrational coupling of H2O and D2O to electronic levels of Gd3+,” Chem. Phys. Lett. 11, 143 (1971).
    [CrossRef]
  9. F. Auzel, “Material for ionic solid-state lasers,” in Spectroscopy of Solid-State Laser-Type Material, B. Di Bartolo, ed. (Plenum, New York, 1987), pp. 293–341.
    [CrossRef]
  10. J. W. Goodman, Statistical Optics (Wiley, New York, 1985; Statistical OpticsPlenum, New York, 1990).
  11. D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
    [CrossRef]
  12. K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
    [CrossRef]
  13. K. R. Germann and A. Kiel, “Radiative and nonradiative transitions in LaCl3:Pr and PrCl3,” Phys. Rev. B 8, 1846 (1973).
    [CrossRef]
  14. N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
    [CrossRef]
  15. R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: superfluorescence,” Phys. Rev. A 11, 1507 (1975).
    [CrossRef]
  16. M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
    [CrossRef] [PubMed]
  17. R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
    [CrossRef]
  18. F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
    [CrossRef]
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.
  20. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).
    [CrossRef] [PubMed]
  21. M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985).
    [CrossRef] [PubMed]
  22. V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
    [CrossRef]

1991 (2)

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
[CrossRef]

1988 (3)

F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
[CrossRef]

See, for example, the special issue on solid state lasers, IEEE J. Quantum Electron. 24, 881 (1988).

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

1987 (1)

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

1985 (2)

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

1984 (1)

J. Dexpert-Ghys and F. Auzel, “Existence of cooperative absorption lines for Yb-(OH-OD) pairs,” J. Chem. Phys. 80, 4003 (1984).
[CrossRef]

1983 (1)

R. H. Lehmberg and S. P. Obenschain, “Use of spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27 (1983).
[CrossRef]

1982 (1)

R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
[CrossRef]

1979 (1)

F. Auzel, “The auto-extinction of Nd3+: fundamental mechanism and predictive criterion of simple laser material,” Mat. Res. Bull. 14, 223 (1979).
[CrossRef]

1976 (1)

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

1975 (3)

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

H. P. Weber, “Review on Nd pentaphosphate lasers,” Opt. Quantum Electron. 7, 431 (1975).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: superfluorescence,” Phys. Rev. A 11, 1507 (1975).
[CrossRef]

1973 (2)

K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
[CrossRef]

K. R. Germann and A. Kiel, “Radiative and nonradiative transitions in LaCl3:Pr and PrCl3,” Phys. Rev. B 8, 1846 (1973).
[CrossRef]

1971 (1)

Y. Haas and G. Stein, “Radiative and radiationless transitions in solution of rare earth ions: vibrational coupling of H2O and D2O to electronic levels of Gd3+,” Chem. Phys. Lett. 11, 143 (1971).
[CrossRef]

Agranovich, V. M.

V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
[CrossRef]

Auzel, F.

F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
[CrossRef]

J. Dexpert-Ghys and F. Auzel, “Existence of cooperative absorption lines for Yb-(OH-OD) pairs,” J. Chem. Phys. 80, 4003 (1984).
[CrossRef]

F. Auzel, “The auto-extinction of Nd3+: fundamental mechanism and predictive criterion of simple laser material,” Mat. Res. Bull. 14, 223 (1979).
[CrossRef]

F. Auzel, “Material for ionic solid-state lasers,” in Spectroscopy of Solid-State Laser-Type Material, B. Di Bartolo, ed. (Plenum, New York, 1987), pp. 293–341.
[CrossRef]

Ayral, H.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Belan, V. R.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: superfluorescence,” Phys. Rev. A 11, 1507 (1975).
[CrossRef]

Boyd, R. W.

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

Briskina, C. M.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Budin, J. P.

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

Chesler, R. B.

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

Chin, N. D.

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

Dexpert-Ghys, J.

J. Dexpert-Ghys and F. Auzel, “Existence of cooperative absorption lines for Yb-(OH-OD) pairs,” J. Chem. Phys. 80, 4003 (1984).
[CrossRef]

Dimitrova, O. V.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Florian, R.

R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
[CrossRef]

Germann, K. R.

K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
[CrossRef]

K. R. Germann and A. Kiel, “Radiative and nonradiative transitions in LaCl3:Pr and PrCl3,” Phys. Rev. B 8, 1846 (1973).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985; Statistical OpticsPlenum, New York, 1990).

Gouédard, C.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Grigorishin, K. I.

V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
[CrossRef]

Grodkiewicz, W. H.

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

Guggenheim, H.

K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
[CrossRef]

Haas, Y.

Y. Haas and G. Stein, “Radiative and radiationless transitions in solution of rare earth ions: vibrational coupling of H2O and D2O to electronic levels of Gd3+,” Chem. Phys. Lett. 11, 143 (1971).
[CrossRef]

Hubert, S.

F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
[CrossRef]

Husson, D.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Kiel, A.

K. R. Germann and A. Kiel, “Radiative and nonradiative transitions in LaCl3:Pr and PrCl3,” Phys. Rev. B 8, 1846 (1973).
[CrossRef]

K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
[CrossRef]

Kravtsov, V. E.

V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
[CrossRef]

Lagendijk, A.

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

Lauriou, J.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Lavrov, A. V.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Lehmberg, R. H.

R. H. Lehmberg and S. P. Obenschain, “Use of spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27 (1983).
[CrossRef]

Lugiato, L. A.

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: superfluorescence,” Phys. Rev. A 11, 1507 (1975).
[CrossRef]

Malcuit, M. S.

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

Marais, M.

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

Maret, G.

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

Markushev, V. M.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Martin, O.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Meichenin, D.

F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
[CrossRef]

Meyer, B.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Miki, J. J.

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

Obenschain, S. P.

R. H. Lehmberg and S. P. Obenschain, “Use of spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27 (1983).
[CrossRef]

Potopowicz, J. R.

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

Rostaing, M.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Sauteret, C.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Savary, H.

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

Schmid, D.

R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
[CrossRef]

Schwan, L. O.

R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.

Simkin, D. J.

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

Singh, S.

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

Stein, G.

Y. Haas and G. Stein, “Radiative and radiationless transitions in solution of rare earth ions: vibrational coupling of H2O and D2O to electronic levels of Gd3+,” Chem. Phys. Lett. 11, 143 (1971).
[CrossRef]

Ter-Gabrielyan, N. E.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Van Albada, M. P.

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

Van Vitert, L. G.

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

Véron, D.

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Weber, H. P.

H. P. Weber, “Review on Nd pentaphosphate lasers,” Opt. Quantum Electron. 7, 431 (1975).
[CrossRef]

Wolf, P. E.

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

Zolin, V. F.

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

K. R. Germann, A. Kiel, and H. Guggenheim, “Stimulated emission from PrCl3,” Appl. Phys. Lett. 22, 87 (1973).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Haas and G. Stein, “Radiative and radiationless transitions in solution of rare earth ions: vibrational coupling of H2O and D2O to electronic levels of Gd3+,” Chem. Phys. Lett. 11, 143 (1971).
[CrossRef]

Europhys. Lett. (1)

F. Auzel, S. Hubert, and D. Meichenin, “Very threshold cw excitation of superfluorescence at 2.72 μ m in Er3+,” Europhys. Lett. 7, 459 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

See, for example, the special issue on solid state lasers, IEEE J. Quantum Electron. 24, 881 (1988).

J. Appl. Phys. (1)

S. Singh, R. B. Chesler, W. H. Grodkiewicz, J. R. Potopowicz, and L. G. Van Vitert, “Room temperature cw Nd:CeCl3laser,” J. Appl. Phys. 46, 436 (1975).
[CrossRef]

J. Chem. Phys. (1)

J. Dexpert-Ghys and F. Auzel, “Existence of cooperative absorption lines for Yb-(OH-OD) pairs,” J. Chem. Phys. 80, 4003 (1984).
[CrossRef]

J. Cryst. Growth (1)

M. Marais, N. D. Chin, H. Savary, and J. P. Budin, “Croissance cristalline des pentaphosphates de terres rares, NdPP et NdLaPP,” J. Cryst. Growth 35, 329 (1976).
[CrossRef]

Mat. Res. Bull. (1)

F. Auzel, “The auto-extinction of Nd3+: fundamental mechanism and predictive criterion of simple laser material,” Mat. Res. Bull. 14, 223 (1979).
[CrossRef]

Opt. Commun. (2)

R. H. Lehmberg and S. P. Obenschain, “Use of spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27 (1983).
[CrossRef]

D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42 (1988).
[CrossRef]

Opt. Quantum Electron. (1)

H. P. Weber, “Review on Nd pentaphosphate lasers,” Opt. Quantum Electron. 7, 431 (1975).
[CrossRef]

Phys. Rev. A (1)

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: superfluorescence,” Phys. Rev. A 11, 1507 (1975).
[CrossRef]

Phys. Rev. B (2)

K. R. Germann and A. Kiel, “Radiative and nonradiative transitions in LaCl3:Pr and PrCl3,” Phys. Rev. B 8, 1846 (1973).
[CrossRef]

V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931 (1991).
[CrossRef]

Phys. Rev. Lett. (3)

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).
[CrossRef] [PubMed]

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985).
[CrossRef] [PubMed]

M. S. Malcuit, J. J. Miki, D. J. Simkin, and R. W. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59, 1189 (1987).
[CrossRef] [PubMed]

Solid State Commun. (1)

R. Florian, L. O. Schwan, and D. Schmid, “Superradiance and high-gain mirrorless laser activity of O2−-centers in KCl,” Solid State Commun. 42, 55 (1982).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. E. Ter-Gabrielyan, V. M. Markushev, V. R. Belan, C. M. Briskina, O. V. Dimitrova, V. F. Zolin, and A. V. Lavrov, “Stimulated radiation emitted by LiNdPO3 and NdP5O14 powders,” Sov. J. Quantum Electron. 21, 281 (1991).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.

F. Auzel, “Material for ionic solid-state lasers,” in Spectroscopy of Solid-State Laser-Type Material, B. Di Bartolo, ed. (Plenum, New York, 1987), pp. 293–341.
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, New York, 1985; Statistical OpticsPlenum, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

General scheme of the experimental setup. Pumping of the materials is either along a line (as shown here) or with a circular spot (only for the powders). A short multimode fiber transports the fluorescence light to a CCD camera, a fast detector (diode or streak camera), and a spectrometer.

Fig. 2
Fig. 2

Fluorescence spectra of NdLaPP pumped by a 532-nm, 6-ns pulse from a second-harmonic Q-switched Nd:YAG laser. Curves a and c, respectively, correspond to the ASE regime (low pumping) and short-pulse laserlike emission. Curve b is same as a but just below the appearance of regime c. Emission line c is very narrow (0.15 nm), but the curve has been vertically expanded to show the small remaining wings.

Fig. 3
Fig. 3

Temporal behavior of the ASE generated in the NdLaPP. Going from the bottom to the top curve, the pumping energy is respectively 10, 20, and 30 mJ. Note the speeding of the initial fluorescence decay with harder pumping. The long-time evolution is the same for the three curves corresponding to the 120-μs excited state lifetime (not shown).

Fig. 4
Fig. 4

Temporal behavior of the faint fluorescence emission detected in hydrated NdCl3 powder. The estimated relaxation time is 16 ns. (The shorter pulse is the pump pulse.)

Fig. 5
Fig. 5

Energy of the single short-pulse emission of the hydrated NdCl3 powders collected through the fiber versus pumping energy. There is a threshold near 30 mJ. The dynamic range is small because of multiple-pulse generation above 50 mJ. The initial behavior tends to rule out a superfluorescence mechanism.

Fig. 6
Fig. 6

Laserlike emission of the hydrated chloride powder, consisting of several pulses when pumped above 50 mJ of green light. In the figure the pump pulse is superimposed to show the timing. This behavior is reminiscent of relaxation oscillation in a laser cavity.

Fig. 7
Fig. 7

To compare output patterns with sources of difference coherence, we show, a, the image of the fiber output recorded with a monomode Nd:YAG laser source fed into the fiber. The histogram of the intensity, calculated from the marked limited zone, reveals a pure Gaussian speckle. b, Histogram of the fiber output pattern when the short-pulse emission generated in hydrated neodymium chloride powders is used. The narrow distribution corresponds to the incoherent addition of 50 independent speckle patterns.

Fig. 8
Fig. 8

Streak camera picture of the output far field of a fiber fed by a multimode Nd:YAG coherent laser. The slit of the camera apertures the circular output profile following a diameter. We clearly see temporal modulations of the emission that are due to the beating of modes, but the interesting information is that the spatial speckle pattern does not change with time. This stationary pattern is the signature of the temporal coherence of the emission.

Fig. 9
Fig. 9

Same as Fig. 8 but with the short emission of the hydrated neodymium chloride powder. Note the different time scale. The time-stationary speckle pattern is replaced by a temporal speckle pattern with a correlation time of the order of 10 ps. This is the signature of the temporal incoherence of the integrated emission.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W nr ( 6 × 10 7 ) exp ( S 0 ) S 0 ( N 2 ) / ( N 2 ) ! ( s 1 ) .

Metrics