Abstract

We demonstrate that two-wave mixing of partially coherent light beams inside a medium with an inertial nonlinear response allows one to increase the coherence substantially. An increase of the coherence function from 0.24 to 0.94 is demonstrated experimentally in SBN:Ce crystal.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
    [Crossref]
  2. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Application I, II (Springer-Verlag, Berlin, 1989, 1990).
  3. G. P. Djotian and U. E. Diakov, Vestn. Mosk. Univ. Geol. Fiz. Astron. 18, 70 (1977).
  4. I. M. Beldiugin and E. M. Zemskov, “On the effect of field polarization on their interaction under stimulated Raman scattering,” Kvantovaya Electron. (Moscow) 4, 1114 (1977).
  5. G. I. Kochemasov and V. D. Nikolaev, “On reproduction of spatial distribution of the pumping beam amplitude and phase in the course of the stimulated Brillouin scattering,” Kvantovaya Electron. (Moscow) 4, 115 (1977).

1979 (1)

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

1977 (3)

G. P. Djotian and U. E. Diakov, Vestn. Mosk. Univ. Geol. Fiz. Astron. 18, 70 (1977).

I. M. Beldiugin and E. M. Zemskov, “On the effect of field polarization on their interaction under stimulated Raman scattering,” Kvantovaya Electron. (Moscow) 4, 1114 (1977).

G. I. Kochemasov and V. D. Nikolaev, “On reproduction of spatial distribution of the pumping beam amplitude and phase in the course of the stimulated Brillouin scattering,” Kvantovaya Electron. (Moscow) 4, 115 (1977).

Beldiugin, I. M.

I. M. Beldiugin and E. M. Zemskov, “On the effect of field polarization on their interaction under stimulated Raman scattering,” Kvantovaya Electron. (Moscow) 4, 1114 (1977).

Diakov, U. E.

G. P. Djotian and U. E. Diakov, Vestn. Mosk. Univ. Geol. Fiz. Astron. 18, 70 (1977).

Djotian, G. P.

G. P. Djotian and U. E. Diakov, Vestn. Mosk. Univ. Geol. Fiz. Astron. 18, 70 (1977).

Kochemasov, G. I.

G. I. Kochemasov and V. D. Nikolaev, “On reproduction of spatial distribution of the pumping beam amplitude and phase in the course of the stimulated Brillouin scattering,” Kvantovaya Electron. (Moscow) 4, 115 (1977).

Kukhtarev, N. V.

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

Nikolaev, V. D.

G. I. Kochemasov and V. D. Nikolaev, “On reproduction of spatial distribution of the pumping beam amplitude and phase in the course of the stimulated Brillouin scattering,” Kvantovaya Electron. (Moscow) 4, 115 (1977).

Odulov, S. G.

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

Soskin, M. S.

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

Vinetsky, V. L.

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

Zemskov, E. M.

I. M. Beldiugin and E. M. Zemskov, “On the effect of field polarization on their interaction under stimulated Raman scattering,” Kvantovaya Electron. (Moscow) 4, 1114 (1977).

Kvantovaya Electron. (Moscow) (2)

I. M. Beldiugin and E. M. Zemskov, “On the effect of field polarization on their interaction under stimulated Raman scattering,” Kvantovaya Electron. (Moscow) 4, 1114 (1977).

G. I. Kochemasov and V. D. Nikolaev, “On reproduction of spatial distribution of the pumping beam amplitude and phase in the course of the stimulated Brillouin scattering,” Kvantovaya Electron. (Moscow) 4, 115 (1977).

Usp. Phys. Nauk (1)

V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Usp. Phys. Nauk 129, 113 (1979).
[Crossref]

Vestn. Mosk. Univ. Geol. Fiz. Astron. (1)

G. P. Djotian and U. E. Diakov, Vestn. Mosk. Univ. Geol. Fiz. Astron. 18, 70 (1977).

Other (1)

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Application I, II (Springer-Verlag, Berlin, 1989, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of the coherence function Φ on the parameter ΓL for different values of the input intensity ratio: (a) low initial contrast, (b) greater initial contrast.

Fig. 2
Fig. 2

Schematic of the experiment: 1, He–Cd laser; 2’s, beam splitters; 3, SBN crystal; 4, short-focus lens; 5’s, mirrors; 6, detector; 7, diaphragm. (Mirror 5A is rotatable.)

Fig. 3
Fig. 3

Experimental (circles) and theoretical (solid curve) dependences of Φ on the logarithm of the input intensity ratio.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 1 z + 1 υ E 1 t = Γ 2 Q · E 1 I 1 + I 2 , E 2 z + 1 υ E 2 t = Γ 2 Q * · E 2 I 1 + I 2 ,
τ Q t + Q = E 1 E 2 * ,
E 1 , 2 ( z , t ) = E 1 , 2 ( ξ ) , where ξ = z υ t ,
E 1 ξ = Γ 2 E 1 E 2 * I 1 + I 2 E 2 , E 2 ξ = Γ 2 E 1 * E 2 I 1 + I 2 E 1 .
U = ( I 2 I 1 ) / ( I 1 + I 2 ) , V = 4 | E 1 E 2 * | 2 / ( I 1 + I 2 ) 2 ,
d U d z = Γ 2 V , d V d z = Γ U V .
P ( z ) = 4 I 1 I 2 / ( I 1 + I 2 ) 2 ,
Φ 2 ( z ) = 1 P 0 ( 1 Φ 0 2 ) 1 + P 0 ( 1 Φ 0 2 ) sinh 2 ( M 1 2 Γ z ) ,
P ( z ) = P 0 ( 1 Φ 0 2 ) + 1 P 0 ( 1 Φ 0 2 ) cosh 2 ( M 1 2 Γ z ) ,
P 0 = P ( z = 0 ) , Φ 0 = Φ ( z = 0 ) , M = arctanh { [ ( I 2 I 1 ) / ( I 2 + I 1 ) ] / [ 1 P 0 ( 1 Φ 0 2 ) ] 1 / 2 } .
Γ L = ln ( 4 / P 0 Φ 0 2 ) ,
4 I 1 ( 0 ) / I 2 ( 0 ) 1 , i . e . , P 0 1.

Metrics