Abstract

We present the results of Raman shifting the radiation from an ArF laser in HD and D2 to produce tunable high-power vacuum-ultraviolet radiation. Calculations of the Raman gain for H2, D2 and HD at 193 nm are presented Modifications made to the ArF laser to improve beam quality are described. Wavelengths as short as 132 nm are achieved by Raman shifting in D2. The gas must be cooled below room temperature for efficient Raman shifting in HD. We obtain energies as high as 1 mJ at 170 nm by Raman shifting in HD at liquid-nitrogen temperature. The Raman-shifted radiation is used to perform two-photon spectroscopy in atomic and molecular fluorine and molecular hydrogen.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wilke and W. Schmidt, “Tunable coherent radiation source covering a spectral range from 185 nm to 880 nm,” Appl. Phys. 18, 177–181 (1979); V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978).
    [Crossref]
  2. D. J. Brink and D. Proch, “Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser,” Opt. Lett. 7, 494–496 (1982).
    [Crossref] [PubMed]
  3. H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
    [Crossref]
  4. K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
    [Crossref]
  5. H. Wallmeier and H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
    [Crossref]
  6. B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, and J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
    [Crossref]
  7. V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
    [Crossref]
  8. G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
    [Crossref] [PubMed]
  9. P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
    [Crossref]
  10. T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
    [Crossref]
  11. T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
    [Crossref]
  12. A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
    [Crossref]
  13. H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
    [Crossref]
  14. S. Wada, A. Kasai, and H. Tashiro, “Efficient generation of higher-order anti-Stokes VUV radiation by steep-rise pumping,” Opt. Lett. 17, 97–99 (1992).
    [Crossref] [PubMed]
  15. R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.
  16. H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).
  17. H. F. Döbele and B. Rückle, “Application of an argon–fluoride laser system to the generation of VUV radiation by stimulated Raman scattering,” Appl. Opt. 23, 1040–1043 (1984).
    [Crossref]
  18. H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
    [Crossref]
  19. G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.
  20. H. Komine, “Stimulated vibrational Raman scattering in HD,” IEEE J. Quantum Electron. QE-22, 520–521 (1986).
    [Crossref]
  21. Y. Shimoji and N. Djeu, “Overtone pumped superfluorescent HCl laser frequency converter,” Appl. Phys. Lett. 49, 1–3 (1986).
    [Crossref]
  22. D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
    [Crossref]
  23. B. P. Scott and N. Djeu, “Efficient Raman energy extraction in HD,” Appl. Opt. 29, 2217–2218 (1990).
    [Crossref] [PubMed]
  24. G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.
  25. D. J. Kligler and C. K. Rhodes, “Observation of two-photon excitation of the H2E, F 1Σg+state,” Phys. Rev. Lett. 40, 309–313 (1978).
    [Crossref]
  26. W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
    [Crossref]
  27. H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
    [Crossref]
  28. U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
    [Crossref] [PubMed]
  29. J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
    [Crossref] [PubMed]
  30. M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
    [Crossref]
  31. R. Pizzoferrato and M. Casalboni, “Extension of two-photon spectroscopy to the vacuum ultraviolet using synchrotron radiation,” J. Phys. E 20, 896–899 (1987).
    [Crossref]
  32. R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
    [Crossref]
  33. G. W. Faris and M. J. Dyer, “Two-photon excitation of Ne at 133 nm,” Opt. Lett. 18, 382–384 (1993).
    [Crossref] [PubMed]
  34. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
    [Crossref]
  35. M. A. Henesian, C. D. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
    [Crossref] [PubMed]
  36. J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
    [Crossref]
  37. J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. QE-19, 1407–1413 (1983).
    [Crossref]
  38. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
    [Crossref]
  39. G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), pp. 124–125, 133–135.
  40. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977), Tables I and J.
  41. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
    [Crossref] [PubMed]
  42. J. Rychlewski, “Frequency dependent polarizabilities for the ground state of H2, HD, and D2,” J. Chem. Phys. 78, 7252–7259 (1983).
    [Crossref]
  43. J. Rychlewski, Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland (personal communication, 1992).
  44. A. L. Ford and J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418–426 (1973).
    [Crossref]
  45. W. M. Huo and R. L. Jaffe, “Ab initio calculation of the third-order susceptibility of H2,” Phys. Rev. Lett. 47, 30–34 (1981).
    [Crossref]
  46. D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2and D2,” J. Chem. Phys. 94, 6073–6080 (1991).
    [Crossref]
  47. C. Schwartz and R. J. LeRoy, “Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen,” J. Mol. Spectrosc. 121, 420–439 (1987).
    [Crossref]
  48. A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
    [Crossref]
  49. W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  50. D. M. Bishop and L. M. Cheung, “Dynamic dipole polarizability of H2and HeH+,” J. Chem. Phys. 72, 5125–5132 (1980).
    [Crossref]
  51. S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
    [Crossref]
  52. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
    [Crossref] [PubMed]
  53. D. E. Jennings, A. Weber, and J. W. Brault, “Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2,” Appl. Opt. 25, 284–290 (1986).
    [Crossref]
  54. K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
    [Crossref]
  55. P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
    [Crossref]
  56. G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
    [Crossref]
  57. A. D. May, Department of Physics, University of Toronto, Toronto M5S 1A7, Canada (personal communication, 1992).
  58. T. Witkowicz and A. D. May, “Collisional effects in compressed HD,” Can. J. Phys. 54, 575–583 (1976).
    [Crossref]
  59. R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
    [Crossref]
  60. D. E. Jennings and J. W. Brault, “The ground state of molecular hydrogen,” J. Mol. Spectrosc. 102, 265–272 (1983).
    [Crossref]
  61. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2and H2,” Phys. Rev. A 34, 1944–1951 (1986).
    [Crossref] [PubMed]
  62. R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
    [Crossref]
  63. B. P. Stoicheff, “High resolution Raman spectroscopy of gases, IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730–741 (1957).
    [Crossref]
  64. F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
    [Crossref]
  65. K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).
  66. A. R. W. McKellar and T. Oka, “A study of the electric quadrupole fundamental band of D2using an infrared difference frequency laser system,” Can. J. Phys. 56, 1315–1320 (1978).
    [Crossref]
  67. N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
    [Crossref]
  68. K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
    [Crossref]
  69. D. C. Robie, J. D. Buck, and W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990).
    [Crossref] [PubMed]
  70. M. Versluis, M. Ebben, M. Drabbels, and J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
    [Crossref] [PubMed]
  71. C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. 2, pp. 169–173.
  72. I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
    [Crossref]
  73. P. Senn and K. Dressier, “Spectroscopic identification of rovibronic levels lying above the potential barrier of the EF 1Σg+double-minimum state of the H2molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
    [Crossref]
  74. I. Dabrowski and G. Herzberg, “The absorption and emission spectra of HD in the vacuum ultraviolet,” Can. J. Phys. 54, 525–567 (1976).
    [Crossref]
  75. G. H. Dieke, “The 2s1∑ → 2p1∑ bands of the hydrogen molecule,” Phys. Rev. 50, 797–805 (1936).
    [Crossref]
  76. K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
    [Crossref]
  77. Note the error in the position of the R(25) line in the (7, 1) band in Ref. 76. The correct value is probably 51 665.27.
  78. Positions for lines in the 7, 1 band not appearing in Ref. 76 may be calculated from the 7, 0 band line positions by use of the 1, 0 Q Raman band given in Ref. 79.
  79. M. Loëte and H. Berger, “High resolution Raman spectroscopy of the fundamental vibrational band of 16O2,” J. Mol. Spectrosc. 68, 317–325 (1977).
    [Crossref]
  80. M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
    [Crossref]
  81. G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
    [Crossref]
  82. X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
    [Crossref]
  83. M. P. Lee and R. K. Hanson, “Calculations of O2absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quantum Spectrosc. Radiât. Transfer 36, 425–440 (1986).
    [Crossref]
  84. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
    [Crossref]
  85. A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
    [Crossref]
  86. C. Amiot and J. Verges, “The magnetic dipole a 1Δ→X 2Σg−transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981).
    [Crossref]
  87. D. M. Creek and R. W. Nicholls, “A comprehensive re-analysis of the O2(B 3Σu−−X 3Σg−Schumann–Runge band system,” Proc. R. Soc. London A 341, 517–536 (1975).
    [Crossref]
  88. P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.
  89. R. N. Zare, “Calculation of intensity distribution in the vibrational structure of electronic transitions: the B3Πo+u−X1∑o+g resonance series of molecular iodine,” J. Chem. Phys. 40, 1934–1944 (1964); E. W. Kaiser, “Dipole moment hyper-fine parameters of H35Cl and D35Cl,” J. Chem. Phys. 53, 1686–1703 (1970).
    [Crossref]
  90. J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14, 851–857 (1981); a copy of the program CDIST for calculating rotational constants and their centrifugal corrections was kindly provided by this author.
    [Crossref]
  91. Optronics Laboratories, Inc., deuterium arc calibration lamp.
  92. R. D. Sanders, W. R. Ott, and J. M. Bridges, “Spectral irradiance standard for the ultraviolet: the deuterium lamp,” Appl. Opt. 17, 593–600 (1978).
    [Crossref]
  93. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), pp. 177–181.
  94. Data sheet for model 542G-08-18 from EMR Photoelectric, Princeton, N.J.
  95. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
    [Crossref]
  96. M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley, “Parametric Raman gain suppression in D2and H2,” Opt. Lett. 11, 803–805 (1986).
    [Crossref] [PubMed]
  97. J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [Crossref]
  98. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap. 8.
  99. See the expressions for rotational–vibrational Raman scattering in Ref. 40 and the relevant off-diagonal matrix elements for the polarizability anisotropy given in Ref. 47.
  100. W. L. Glab and J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988).
    [Crossref] [PubMed]
  101. M. J. Dyer and W. K. Bischel, “Optical Stark shift spectroscopy: measurement of the υ= 1 polarizability in H2,” Phys. Rev. A 44, 3138–3143 (1991).
    [Crossref] [PubMed]
  102. G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
    [Crossref]
  103. K. Dressier and L. Wolniewicz, “The HH¯ 1Σg+, state of hydrogen: adiabatic calculation of vibronic states in H2, HD, and D2,” J. Mol. Spectrosc. 86, 534–543 (1981).
    [Crossref]
  104. S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), p. 213.

1993 (1)

1992 (5)

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[Crossref]

S. Wada, A. Kasai, and H. Tashiro, “Efficient generation of higher-order anti-Stokes VUV radiation by steep-rise pumping,” Opt. Lett. 17, 97–99 (1992).
[Crossref] [PubMed]

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[Crossref]

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

1991 (5)

M. J. Dyer and W. K. Bischel, “Optical Stark shift spectroscopy: measurement of the υ= 1 polarizability in H2,” Phys. Rev. A 44, 3138–3143 (1991).
[Crossref] [PubMed]

X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
[Crossref]

M. Versluis, M. Ebben, M. Drabbels, and J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
[Crossref] [PubMed]

D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2and D2,” J. Chem. Phys. 94, 6073–6080 (1991).
[Crossref]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[Crossref] [PubMed]

1990 (4)

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[Crossref]

B. P. Scott and N. Djeu, “Efficient Raman energy extraction in HD,” Appl. Opt. 29, 2217–2218 (1990).
[Crossref] [PubMed]

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

D. C. Robie, J. D. Buck, and W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990).
[Crossref] [PubMed]

1989 (3)

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, and J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
[Crossref]

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

1988 (5)

M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
[Crossref]

H. Wallmeier and H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[Crossref]

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[Crossref] [PubMed]

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

W. L. Glab and J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988).
[Crossref] [PubMed]

1987 (6)

P. Senn and K. Dressier, “Spectroscopic identification of rovibronic levels lying above the potential barrier of the EF 1Σg+double-minimum state of the H2molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[Crossref]

K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[Crossref]

C. Schwartz and R. J. LeRoy, “Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen,” J. Mol. Spectrosc. 121, 420–439 (1987).
[Crossref]

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[Crossref]

R. Pizzoferrato and M. Casalboni, “Extension of two-photon spectroscopy to the vacuum ultraviolet using synchrotron radiation,” J. Phys. E 20, 896–899 (1987).
[Crossref]

1986 (10)

H. Komine, “Stimulated vibrational Raman scattering in HD,” IEEE J. Quantum Electron. QE-22, 520–521 (1986).
[Crossref]

Y. Shimoji and N. Djeu, “Overtone pumped superfluorescent HCl laser frequency converter,” Appl. Phys. Lett. 49, 1–3 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[Crossref] [PubMed]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref] [PubMed]

D. E. Jennings, A. Weber, and J. W. Brault, “Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2,” Appl. Opt. 25, 284–290 (1986).
[Crossref]

M. P. Lee and R. K. Hanson, “Calculations of O2absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quantum Spectrosc. Radiât. Transfer 36, 425–440 (1986).
[Crossref]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref] [PubMed]

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley, “Parametric Raman gain suppression in D2and H2,” Opt. Lett. 11, 803–805 (1986).
[Crossref] [PubMed]

1985 (2)

M. A. Henesian, C. D. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
[Crossref] [PubMed]

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

1984 (4)

H. F. Döbele and B. Rückle, “Application of an argon–fluoride laser system to the generation of VUV radiation by stimulated Raman scattering,” Appl. Opt. 23, 1040–1043 (1984).
[Crossref]

H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
[Crossref]

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[Crossref]

K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[Crossref]

1983 (6)

D. E. Jennings and J. W. Brault, “The ground state of molecular hydrogen,” J. Mol. Spectrosc. 102, 265–272 (1983).
[Crossref]

J. Rychlewski, “Frequency dependent polarizabilities for the ground state of H2, HD, and D2,” J. Chem. Phys. 78, 7252–7259 (1983).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[Crossref]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. QE-19, 1407–1413 (1983).
[Crossref]

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[Crossref]

1982 (5)

D. J. Brink and D. Proch, “Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser,” Opt. Lett. 7, 494–496 (1982).
[Crossref] [PubMed]

H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).

S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[Crossref]

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
[Crossref]

1981 (4)

K. Dressier and L. Wolniewicz, “The HH¯ 1Σg+, state of hydrogen: adiabatic calculation of vibronic states in H2, HD, and D2,” J. Mol. Spectrosc. 86, 534–543 (1981).
[Crossref]

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14, 851–857 (1981); a copy of the program CDIST for calculating rotational constants and their centrifugal corrections was kindly provided by this author.
[Crossref]

C. Amiot and J. Verges, “The magnetic dipole a 1Δ→X 2Σg−transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981).
[Crossref]

W. M. Huo and R. L. Jaffe, “Ab initio calculation of the third-order susceptibility of H2,” Phys. Rev. Lett. 47, 30–34 (1981).
[Crossref]

1980 (2)

D. M. Bishop and L. M. Cheung, “Dynamic dipole polarizability of H2and HeH+,” J. Chem. Phys. 72, 5125–5132 (1980).
[Crossref]

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

1979 (4)

V. Wilke and W. Schmidt, “Tunable coherent radiation source covering a spectral range from 185 nm to 880 nm,” Appl. Phys. 18, 177–181 (1979); V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

1978 (3)

D. J. Kligler and C. K. Rhodes, “Observation of two-photon excitation of the H2E, F 1Σg+state,” Phys. Rev. Lett. 40, 309–313 (1978).
[Crossref]

A. R. W. McKellar and T. Oka, “A study of the electric quadrupole fundamental band of D2using an infrared difference frequency laser system,” Can. J. Phys. 56, 1315–1320 (1978).
[Crossref]

R. D. Sanders, W. R. Ott, and J. M. Bridges, “Spectral irradiance standard for the ultraviolet: the deuterium lamp,” Appl. Opt. 17, 593–600 (1978).
[Crossref]

1977 (2)

M. Loëte and H. Berger, “High resolution Raman spectroscopy of the fundamental vibrational band of 16O2,” J. Mol. Spectrosc. 68, 317–325 (1977).
[Crossref]

T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
[Crossref]

1976 (2)

I. Dabrowski and G. Herzberg, “The absorption and emission spectra of HD in the vacuum ultraviolet,” Can. J. Phys. 54, 525–567 (1976).
[Crossref]

T. Witkowicz and A. D. May, “Collisional effects in compressed HD,” Can. J. Phys. 54, 575–583 (1976).
[Crossref]

1975 (1)

D. M. Creek and R. W. Nicholls, “A comprehensive re-analysis of the O2(B 3Σu−−X 3Σg−Schumann–Runge band system,” Proc. R. Soc. London A 341, 517–536 (1975).
[Crossref]

1974 (1)

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

1973 (2)

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

A. L. Ford and J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418–426 (1973).
[Crossref]

1972 (1)

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

1971 (1)

A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[Crossref]

1969 (1)

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[Crossref]

1968 (1)

P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
[Crossref]

1966 (1)

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

1964 (1)

R. N. Zare, “Calculation of intensity distribution in the vibrational structure of electronic transitions: the B3Πo+u−X1∑o+g resonance series of molecular iodine,” J. Chem. Phys. 40, 1934–1944 (1964); E. W. Kaiser, “Dipole moment hyper-fine parameters of H35Cl and D35Cl,” J. Chem. Phys. 53, 1686–1703 (1970).
[Crossref]

1957 (1)

B. P. Stoicheff, “High resolution Raman spectroscopy of gases, IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730–741 (1957).
[Crossref]

1936 (1)

G. H. Dieke, “The 2s1∑ → 2p1∑ bands of the hydrogen molecule,” Phys. Rev. 50, 797–805 (1936).
[Crossref]

Albrecht, A. C.

A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[Crossref]

Albritton, D. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

Amiot, C.

C. Amiot and J. Verges, “The magnetic dipole a 1Δ→X 2Σg−transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981).
[Crossref]

Andresen, P.

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

Baldwin, K. G. H.

B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, and J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
[Crossref]

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

Bamford, D. J.

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

Barker, D. L.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
[Crossref]

Bashkin, S.

S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), p. 213.

Berger, H.

M. Loëte and H. Berger, “High resolution Raman spectroscopy of the fundamental vibrational band of 16O2,” J. Mol. Spectrosc. 68, 317–325 (1977).
[Crossref]

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap. 8.

Bischel, W. K.

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

M. J. Dyer and W. K. Bischel, “Optical Stark shift spectroscopy: measurement of the υ= 1 polarizability in H2,” Phys. Rev. A 44, 3138–3143 (1991).
[Crossref] [PubMed]

D. C. Robie, J. D. Buck, and W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990).
[Crossref] [PubMed]

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[Crossref] [PubMed]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref] [PubMed]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Bishop, D. M.

D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2and D2,” J. Chem. Phys. 94, 6073–6080 (1991).
[Crossref]

D. M. Bishop and L. M. Cheung, “Dynamic dipole polarizability of H2and HeH+,” J. Chem. Phys. 72, 5125–5132 (1980).
[Crossref]

Black, G.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

Bogen, P.

Bokor, J.

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

Bonamy, J.

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

Bornemann, T.

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

Boyd, G. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[Crossref]

Bragg, S. L.

S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[Crossref]

Brannon, P. J.

P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
[Crossref]

Brault, J. W.

D. E. Jennings, A. Weber, and J. W. Brault, “Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2,” Appl. Opt. 25, 284–290 (1986).
[Crossref]

D. E. Jennings and J. W. Brault, “The ground state of molecular hydrogen,” J. Mol. Spectrosc. 102, 265–272 (1983).
[Crossref]

S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[Crossref]

Bridges, J. M.

Brink, D. J.

Browne, J. C.

A. L. Ford and J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418–426 (1973).
[Crossref]

Bryant, H.

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Buck, J. D.

D. C. Robie, J. D. Buck, and W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990).
[Crossref] [PubMed]

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

Burgess, D. D.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

Carlsten, J. L.

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. QE-19, 1407–1413 (1983).
[Crossref]

Carver, J. H.

Casalboni, M.

R. Pizzoferrato and M. Casalboni, “Extension of two-photon spectroscopy to the vacuum ultraviolet using synchrotron radiation,” J. Phys. E 20, 896–899 (1987).
[Crossref]

Chen, C. H.

M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
[Crossref]

Cheung, A. S.-C.

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

Cheung, L. M.

D. M. Bishop and L. M. Cheung, “Dynamic dipole polarizability of H2and HeH+,” J. Chem. Phys. 72, 5125–5132 (1980).
[Crossref]

Church, C. H.

P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
[Crossref]

Copeland, R. A.

P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.

Cosby, P. C.

P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.

Creek, D. M.

D. M. Creek and R. W. Nicholls, “A comprehensive re-analysis of the O2(B 3Σu−−X 3Σg−Schumann–Runge band system,” Proc. R. Soc. London A 341, 517–536 (1975).
[Crossref]

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap. 8.

Czarnetzki, U.

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[Crossref] [PubMed]

Dabrowski, I.

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[Crossref]

I. Dabrowski and G. Herzberg, “The absorption and emission spectra of HD in the vacuum ultraviolet,” Can. J. Phys. 54, 525–567 (1976).
[Crossref]

Dieke, G. H.

G. H. Dieke, “The 2s1∑ → 2p1∑ bands of the hydrogen molecule,” Phys. Rev. 50, 797–805 (1936).
[Crossref]

Djeu, N.

B. P. Scott and N. Djeu, “Efficient Raman energy extraction in HD,” Appl. Opt. 29, 2217–2218 (1990).
[Crossref] [PubMed]

Y. Shimoji and N. Djeu, “Overtone pumped superfluorescent HCl laser frequency converter,” Appl. Phys. Lett. 49, 1–3 (1986).
[Crossref]

Döbele, H. F.

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[Crossref]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[Crossref] [PubMed]

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[Crossref]

H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
[Crossref]

H. F. Döbele and B. Rückle, “Application of an argon–fluoride laser system to the generation of VUV radiation by stimulated Raman scattering,” Appl. Opt. 23, 1040–1043 (1984).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).

Drabbels, M.

Dressier, K.

P. Senn and K. Dressier, “Spectroscopic identification of rovibronic levels lying above the potential barrier of the EF 1Σg+double-minimum state of the H2molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[Crossref]

K. Dressier and L. Wolniewicz, “The HH¯ 1Σg+, state of hydrogen: adiabatic calculation of vibronic states in H2, HD, and D2,” J. Mol. Spectrosc. 86, 534–543 (1981).
[Crossref]

Duncan, M. D.

Dyer, M. J.

G. W. Faris and M. J. Dyer, “Two-photon excitation of Ne at 133 nm,” Opt. Lett. 18, 382–384 (1993).
[Crossref] [PubMed]

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

M. J. Dyer and W. K. Bischel, “Optical Stark shift spectroscopy: measurement of the υ= 1 polarizability in H2,” Phys. Rev. A 44, 3138–3143 (1991).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[Crossref] [PubMed]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref] [PubMed]

G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.

G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.

Ebben, M.

Echargui, M.

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

Egger, H.

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

Faris, G. W.

G. W. Faris and M. J. Dyer, “Two-photon excitation of Ne at 133 nm,” Opt. Lett. 18, 382–384 (1993).
[Crossref] [PubMed]

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.

G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.

Ford, A. L.

A. L. Ford and J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418–426 (1973).
[Crossref]

Freeman, D. E.

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[Crossref]

Gibson, S. T.

Glab, W. L.

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

Gower, M. C.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Haner, D. A.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[Crossref]

Hanson, R. K.

M. P. Lee and R. K. Hanson, “Calculations of O2absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quantum Spectrosc. Radiât. Transfer 36, 425–440 (1986).
[Crossref]

Hargrove, R. S.

R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.

Harrop, W. J.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

Henesian, M. A.

Hermans, P. W.

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

Herring, G. C.

Herzberg, G.

I. Dabrowski and G. Herzberg, “The absorption and emission spectra of HD in the vacuum ultraviolet,” Can. J. Phys. 54, 525–567 (1976).
[Crossref]

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), pp. 124–125, 133–135.

Hessler, J. P.

Hickman, A. P.

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

Hiiwel, L.

X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
[Crossref]

Hilbig, R.

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[Crossref]

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap. 8.

Hörl, M.

H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[Crossref]

Huestis, D. L.

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.

Huo, W. M.

W. M. Huo and R. L. Jaffe, “Ab initio calculation of the third-order susceptibility of H2,” Phys. Rev. Lett. 47, 30–34 (1981).
[Crossref]

Hurst, W. S.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[Crossref]

Hutley, M. C.

A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[Crossref]

Hutson, J. M.

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14, 851–857 (1981); a copy of the program CDIST for calculating rotational constants and their centrifugal corrections was kindly provided by this author.
[Crossref]

Jaffe, R. L.

W. M. Huo and R. L. Jaffe, “Ab initio calculation of the third-order susceptibility of H2,” Phys. Rev. Lett. 47, 30–34 (1981).
[Crossref]

Javan, A.

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Jennings, D. E.

Johns, J. W. C.

N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
[Crossref]

Johnston, W. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[Crossref]

Jusinski, L. E.

Kaminow, I. P.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[Crossref]

Kasai, A.

Keijser, R. A. J.

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Kligler, D. J.

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

D. J. Kligler and C. K. Rhodes, “Observation of two-photon excitation of the H2E, F 1Σg+state,” Phys. Rev. Lett. 40, 309–313 (1978).
[Crossref]

Knaap, H. F. P.

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Komas, V.

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

Komine, H.

H. Komine, “Stimulated vibrational Raman scattering in HD,” IEEE J. Quantum Electron. QE-22, 520–521 (1986).
[Crossref]

Kushawaha, V.

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Lee, M. P.

M. P. Lee and R. K. Hanson, “Calculations of O2absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quantum Spectrosc. Radiât. Transfer 36, 425–440 (1986).
[Crossref]

LeRoy, R. J.

C. Schwartz and R. J. LeRoy, “Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen,” J. Mol. Spectrosc. 121, 420–439 (1987).
[Crossref]

Levi, G.

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

Lewis, B. R.

Loëte, M.

M. Loëte and H. Berger, “High resolution Raman spectroscopy of the fundamental vibrational band of 16O2,” J. Mol. Spectrosc. 68, 317–325 (1977).
[Crossref]

Lombardi, J. R.

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977), Tables I and J.

Loree, T. R.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
[Crossref]

Luk, T. S.

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

Maeda, M.

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

Mahon, R.

Major, L.

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Marangos, J. P.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

Marsault, J. P.

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

Matsumoto, O.

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

Mausault-Herail, F.

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

May, A. D.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

T. Witkowicz and A. D. May, “Collisional effects in compressed HD,” Can. J. Phys. 54, 575–583 (1976).
[Crossref]

A. D. May, Department of Physics, University of Toronto, Toronto M5S 1A7, Canada (personal communication, 1992).

Mazur, E.

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

McCann, M. P.

M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
[Crossref]

McDermid, I. S.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[Crossref]

McKellar, A. R. W.

N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
[Crossref]

A. R. W. McKellar and T. Oka, “A study of the electric quadrupole fundamental band of D2using an infrared difference frequency laser system,” Can. J. Phys. 56, 1315–1320 (1978).
[Crossref]

Meijer, G.

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[Crossref]

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

Mertens, Ph.

Michael, A.

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Miyazoe, Y.

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. 2, pp. 169–173.

Murray, J. R.

M. A. Henesian, C. D. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
[Crossref] [PubMed]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Nicholls, R. W.

D. M. Creek and R. W. Nicholls, “A comprehensive re-analysis of the O2(B 3Σu−−X 3Σg−Schumann–Runge band system,” Proc. R. Soc. London A 341, 517–536 (1975).
[Crossref]

Oka, T.

A. R. W. McKellar and T. Oka, “A study of the electric quadrupole fundamental band of D2using an infrared difference frequency laser system,” Can. J. Phys. 56, 1315–1320 (1978).
[Crossref]

Okabe, H.

H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), pp. 177–181.

Ott, W. R.

Paisner, J. A.

R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.

Park, H.

P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.

Parkinson, W. H.

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[Crossref]

Pasch, E.

Payne, M. G.

M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
[Crossref]

Peters, C. W.

P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
[Crossref]

Petway, L. B.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

Pipin, J.

D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2and D2,” J. Chem. Phys. 94, 6073–6080 (1991).
[Crossref]

Pizzoferrato, R.

R. Pizzoferrato and M. Casalboni, “Extension of two-photon spectroscopy to the vacuum ultraviolet using synchrotron radiation,” J. Phys. E 20, 896–899 (1987).
[Crossref]

Proch, D.

Pummer, H.

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Reintjes, J.

Rhodes, C. K.

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

D. J. Kligler and C. K. Rhodes, “Observation of two-photon excitation of the H2E, F 1Σg+state,” Phys. Rev. Lett. 40, 309–313 (1978).
[Crossref]

Rich, N. H.

N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
[Crossref]

Robie, D. C.

D. C. Robie, J. D. Buck, and W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990).
[Crossref] [PubMed]

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

Rosasco, G. J.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[Crossref]

Röwekamp, M.

H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[Crossref]

H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
[Crossref]

Rückle, B.

H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
[Crossref]

H. F. Döbele and B. Rückle, “Application of an argon–fluoride laser system to the generation of VUV radiation by stimulated Raman scattering,” Appl. Opt. 23, 1040–1043 (1984).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).

Rychlewski, J.

J. Rychlewski, “Frequency dependent polarizabilities for the ground state of H2, HD, and D2,” J. Chem. Phys. 78, 7252–7259 (1983).
[Crossref]

J. Rychlewski, Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland (personal communication, 1992).

Sanctuary, B. D.

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Sanders, R. D.

Schlüter, H.

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

Schmeltekopf, A. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

Schmidt, W.

V. Wilke and W. Schmidt, “Tunable coherent radiation source covering a spectral range from 185 nm to 880 nm,” Appl. Phys. 18, 177–181 (1979); V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978).
[Crossref]

Schomburg, H.

H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).

Schulz-von der Gathen, V.

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

Schwartz, C.

C. Schwartz and R. J. LeRoy, “Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen,” J. Mol. Spectrosc. 121, 420–439 (1987).
[Crossref]

Scott, B. P.

Scott, P. B.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

Senn, P.

P. Senn and K. Dressier, “Spectroscopic identification of rovibronic levels lying above the potential barrier of the EF 1Σg+double-minimum state of the H2molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[Crossref]

Sentrayan, K.

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

Shimoji, Y.

Y. Shimoji and N. Djeu, “Overtone pumped superfluorescent HCl laser frequency converter,” Appl. Phys. Lett. 49, 1–3 (1986).
[Crossref]

Slanger, T. G.

P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.

Smith, W. H.

S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[Crossref]

Smyth, K. C.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[Crossref]

Srinivasan, T.

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

Stoicheff, B. P.

B. P. Stoicheff, “High resolution Raman spectroscopy of gases, IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730–741 (1957).
[Crossref]

Stoner, J. O.

S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), p. 213.

Swift, C. D.

Sze, R. C.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
[Crossref]

Szöke, A.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

Takahashi, A.

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

Tankersley, L. L.

Tashiro, H.

ter Meulen, J. J.

van den Hout, K. D.

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Verges, J.

C. Amiot and J. Verges, “The magnetic dipole a 1Δ→X 2Σg−transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981).
[Crossref]

Versluis, M.

Voges, A.

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

Wada, S.

Wallenstein, R.

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[Crossref]

Wallmeier, H.

H. Wallmeier and H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[Crossref]

Weber, A.

Wenzel, R. G.

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. QE-19, 1407–1413 (1983).
[Crossref]

Wilke, V.

V. Wilke and W. Schmidt, “Tunable coherent radiation source covering a spectral range from 185 nm to 880 nm,” Appl. Phys. 18, 177–181 (1979); V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978).
[Crossref]

Witkowicz, T.

T. Witkowicz and A. D. May, “Collisional effects in compressed HD,” Can. J. Phys. 54, 575–583 (1976).
[Crossref]

Wodtke, A. M.

X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
[Crossref]

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

Wolniewicz, L.

K. Dressier and L. Wolniewicz, “The HH¯ 1Σg+, state of hydrogen: adiabatic calculation of vibronic states in H2, HD, and D2,” J. Mol. Spectrosc. 86, 534–543 (1981).
[Crossref]

Yang, X.

X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
[Crossref]

Yoshino, K.

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[Crossref]

Zacharias, H.

H. Wallmeier and H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[Crossref]

Zare, R. N.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

R. N. Zare, “Calculation of intensity distribution in the vibrational structure of electronic transitions: the B3Πo+u−X1∑o+g resonance series of molecular iodine,” J. Chem. Phys. 40, 1934–1944 (1964); E. W. Kaiser, “Dipole moment hyper-fine parameters of H35Cl and D35Cl,” J. Chem. Phys. 53, 1686–1703 (1970).
[Crossref]

Appl. Opt. (7)

Appl. Phys. (1)

V. Wilke and W. Schmidt, “Tunable coherent radiation source covering a spectral range from 185 nm to 880 nm,” Appl. Phys. 18, 177–181 (1979); V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978).
[Crossref]

Appl. Phys. B (4)

H. Schomburg, H. F. Döbele, and B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[Crossref]

H. Wallmeier and H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[Crossref]

H. Schomburg, H. F. Döbele, and B. Rückle, “Tunable narrow line amplification in ArF*and anti-Stokes production around 179 nm,” Appl. Phys. B 28, 201 (1982).

H. F. Döbele, M. Hörl, and M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[Crossref]

Appl. Phys. Lett. (2)

T. R. Loree, R. C. Sze, and D. L. Barker, “Efficient Raman shifting of ArF and KrF laser wavelengths,” Appl. Phys. Lett. 31, 37–39 (1977).
[Crossref]

Y. Shimoji and N. Djeu, “Overtone pumped superfluorescent HCl laser frequency converter,” Appl. Phys. Lett. 49, 1–3 (1986).
[Crossref]

Astrophys. J. (1)

S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[Crossref]

Can. J. Phys. (6)

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[Crossref]

B. P. Stoicheff, “High resolution Raman spectroscopy of gases, IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730–741 (1957).
[Crossref]

A. R. W. McKellar and T. Oka, “A study of the electric quadrupole fundamental band of D2using an infrared difference frequency laser system,” Can. J. Phys. 56, 1315–1320 (1978).
[Crossref]

T. Witkowicz and A. D. May, “Collisional effects in compressed HD,” Can. J. Phys. 54, 575–583 (1976).
[Crossref]

C. Amiot and J. Verges, “The magnetic dipole a 1Δ→X 2Σg−transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981).
[Crossref]

I. Dabrowski and G. Herzberg, “The absorption and emission spectra of HD in the vacuum ultraviolet,” Can. J. Phys. 54, 525–567 (1976).
[Crossref]

IEEE J. Quantum Electron. (10)

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szöke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[Crossref]

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. QE-19, 1407–1413 (1983).
[Crossref]

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[Crossref]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[Crossref]

H. Komine, “Stimulated vibrational Raman scattering in HD,” IEEE J. Quantum Electron. QE-22, 520–521 (1986).
[Crossref]

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[Crossref]

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[Crossref]

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

H. F. Döbele, M. Röwekamp, and B. Rückle, “Amplification of 193 nm radiation in argon–fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. QE-20, 1284–1287 (1984).
[Crossref]

V. Schulz-von der Gathen, T. Bornemann, V. Komas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[Crossref]

J. Chem. Phys. (14)

M. P. McCann, C. H. Chen, and M. G. Payne, “Two-photon (vacuum ultaviolet + visible) spectroscopy of argon, krypton, xenon, and molecular hydrogen,” J. Chem. Phys. 89, 5429–5441 (1988).
[Crossref]

J. Rychlewski, “Frequency dependent polarizabilities for the ground state of H2, HD, and D2,” J. Chem. Phys. 78, 7252–7259 (1983).
[Crossref]

D. M. Bishop and L. M. Cheung, “Dynamic dipole polarizability of H2and HeH+,” J. Chem. Phys. 72, 5125–5132 (1980).
[Crossref]

D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2and D2,” J. Chem. Phys. 94, 6073–6080 (1991).
[Crossref]

A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[Crossref]

K. C. Smyth, G. J. Rosasco, and W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collisions with D2, He, Ar, H2and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[Crossref]

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2215–2124 (1989).
[Crossref]

F. Mausault-Herail, M. Echargui, G. Levi, J. P. Marsault, and J. Bonamy, “Collisional effects on the rotational and rotation-vibration Raman spectra of HD compressed by argon,” J. Chem. Phys. 77, 2715–2727 (1982).
[Crossref]

P. Senn and K. Dressier, “Spectroscopic identification of rovibronic levels lying above the potential barrier of the EF 1Σg+double-minimum state of the H2molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[Crossref]

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[Crossref]

G. Meijer, A. M. Wodtke, A. Voges, H. Schlüter, and P. Andresen, “State-selective detection of CO using a tunable ArF excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988).
[Crossref]

X. Yang, A. M. Wodtke, and L. Hiiwel, “Direct observation of orbit rotation predissociation in the O2Schumann–Runge system,” J. Chem. Phys. 94, 2469–2474 (1991).
[Crossref]

R. N. Zare, “Calculation of intensity distribution in the vibrational structure of electronic transitions: the B3Πo+u−X1∑o+g resonance series of molecular iodine,” J. Chem. Phys. 40, 1934–1944 (1964); E. W. Kaiser, “Dipole moment hyper-fine parameters of H35Cl and D35Cl,” J. Chem. Phys. 53, 1686–1703 (1970).
[Crossref]

G. W. Faris, M. J. Dyer, D. L. Huestis, and W. K. Bischel, “Two-photon spectroscopy of the F1Πg and f3Πg states of molecular fluorine,” J. Chem. Phys. 97, 5964–5969 (1992).
[Crossref]

J. Mol. Spectrosc. (9)

K. Dressier and L. Wolniewicz, “The HH¯ 1Σg+, state of hydrogen: adiabatic calculation of vibronic states in H2, HD, and D2,” J. Mol. Spectrosc. 86, 534–543 (1981).
[Crossref]

M. Loëte and H. Berger, “High resolution Raman spectroscopy of the fundamental vibrational band of 16O2,” J. Mol. Spectrosc. 68, 317–325 (1977).
[Crossref]

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973); a copy of the program RLS for calculating transition line strengths and positions was kindly provided by these authors.
[Crossref]

A. S.-C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, “Molecular spectroscopic constants of O2 (B 3Σu−): the upper state of the Schumann Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[Crossref]

N. H. Rich, J. W. C. Johns, and A. R. W. McKellar, “Frequency and intensity measurements in the fundamental infrared band of HD,” J. Mol. Spectrosc. 95, 432–438 (1982).
[Crossref]

P. J. Brannon, C. H. Church, and C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,” J. Mol. Spectrosc. 27, 44–54 (1968).
[Crossref]

D. E. Jennings and J. W. Brault, “The ground state of molecular hydrogen,” J. Mol. Spectrosc. 102, 265–272 (1983).
[Crossref]

C. Schwartz and R. J. LeRoy, “Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen,” J. Mol. Spectrosc. 121, 420–439 (1987).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14, 851–857 (1981); a copy of the program CDIST for calculating rotational constants and their centrifugal corrections was kindly provided by this author.
[Crossref]

J. Phys. Chem. Ref. Data (1)

K. Yoshino, D. E. Freeman, and W. H. Parkinson, “Atlas of the Schumann–Runge absorption bands of O2in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[Crossref]

J. Phys. E (1)

R. Pizzoferrato and M. Casalboni, “Extension of two-photon spectroscopy to the vacuum ultraviolet using synchrotron radiation,” J. Phys. E 20, 896–899 (1987).
[Crossref]

J. Quantum Spectrosc. Radiât. Transfer (1)

M. P. Lee and R. K. Hanson, “Calculations of O2absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quantum Spectrosc. Radiât. Transfer 36, 425–440 (1986).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Takahashi, O. Matsumoto, M. Maeda, and Y. Miyazoe, “Tunable VUV generation by anti-Stokes stimulated Raman conversion of XeCl laser radiation,” Jpn. J. Appl. Phys. 26, L954–L956 (1987).
[Crossref]

Opt. Commun. (1)

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[Crossref]

Opt. Lett. (7)

Phys. Rev. (2)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

G. H. Dieke, “The 2s1∑ → 2p1∑ bands of the hydrogen molecule,” Phys. Rev. 50, 797–805 (1936).
[Crossref]

Phys. Rev. A (7)

M. J. Dyer and W. K. Bischel, “Optical Stark shift spectroscopy: measurement of the υ= 1 polarizability in H2,” Phys. Rev. A 44, 3138–3143 (1991).
[Crossref] [PubMed]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref] [PubMed]

A. L. Ford and J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418–426 (1973).
[Crossref]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref] [PubMed]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[Crossref]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[Crossref] [PubMed]

J. D. Buck, D. C. Robie, A. P. Hickman, D. J. Bamford, and W. K. Bischel, “Two-photon excitation and excited-state absorption cross sections for H2E, F 1Σg+ (υ=6): measurement and calculations,” Phys. Rev. A 39, 3932–3941 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. J. Kligler and C. K. Rhodes, “Observation of two-photon excitation of the H2E, F 1Σg+state,” Phys. Rev. Lett. 40, 309–313 (1978).
[Crossref]

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

W. M. Huo and R. L. Jaffe, “Ab initio calculation of the third-order susceptibility of H2,” Phys. Rev. Lett. 47, 30–34 (1981).
[Crossref]

Physica (2)

R. A. J. Keijser, J. R. Lombardi, K. D. van den Hout, B. D. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

K. D. van den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, “The broadening and shift of the rotational Raman lines for hydrogen isotopes at low pressures,” Physica 104A, 509–547 (1980).

Proc. R. Soc. London A (1)

D. M. Creek and R. W. Nicholls, “A comprehensive re-analysis of the O2(B 3Σu−−X 3Σg−Schumann–Runge band system,” Proc. R. Soc. London A 341, 517–536 (1975).
[Crossref]

Spectrosc. Lett. (1)

K. Sentrayan, L. Major, H. Bryant, A. Michael, and V. Kushawaha, “Laser wavelength, pressure and temperature dependence on the stimulated Raman scattering gain in H2,” Spectrosc. Lett. 25, 627–637 (1992).
[Crossref]

Other (18)

C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. 2, pp. 169–173.

A. D. May, Department of Physics, University of Toronto, Toronto M5S 1A7, Canada (personal communication, 1992).

J. Rychlewski, Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland (personal communication, 1992).

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), pp. 124–125, 133–135.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977), Tables I and J.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

G. W. Faris, M. J. Dyer, W. K. Bischel, and D. L. Huestis, “VUV stimulated Raman scattering of an ArF laser in D2and HD,” Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 266–268.

R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.

G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.

P. C. Cosby, R. A. Copeland, H. Park, and T. G. Slanger, “Line positions and molecular constants for O2 Schumann–Runge bands,” to be submitted to J. Chem. Phys.

Optronics Laboratories, Inc., deuterium arc calibration lamp.

H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), pp. 177–181.

Data sheet for model 542G-08-18 from EMR Photoelectric, Princeton, N.J.

Note the error in the position of the R(25) line in the (7, 1) band in Ref. 76. The correct value is probably 51 665.27.

Positions for lines in the 7, 1 band not appearing in Ref. 76 may be calculated from the 7, 0 band line positions by use of the 1, 0 Q Raman band given in Ref. 79.

S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), p. 213.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap. 8.

See the expressions for rotational–vibrational Raman scattering in Ref. 40 and the relevant off-diagonal matrix elements for the polarizability anisotropy given in Ref. 47.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental apparatus for Raman shifting an ArF excimer laser for multiphoton spectroscopy.

Fig. 2
Fig. 2

Beam profiles for beams leaving (a) the oscillator and (b) the amplifier. The amplifier beam is reduced in size by a factor of 2.

Fig. 3
Fig. 3

Schematic of liquid-nitrogen-cooled Raman cell (output side). The input side of the cell is symmetric to the output side and is not shown.

Fig. 4
Fig. 4

(a) ArF laser intensity for an old gas fill and several meters of air absorption path; (b) intensity for a new gas fill and good purge; and (c) two-photon calibration lines as a function of two-photon energy and wavelength. Tick marks at the top indicate O2 Schumann–Runge lines; those at the bottom are for two-photon resonances.

Fig. 5
Fig. 5

Dependence of first Stokes energy for Raman shifting in D2 with the tilt of the focusing lens.

Fig. 6
Fig. 6

Stokes, S, and anti-Stokes, AS, orders generated in D2 at room temperature and a density of 5.4 amagat.

Fig. 7
Fig. 7

Stokes and anti-Stokes orders generated in HD at 77 K and a density of 6 amagat.

Fig. 8
Fig. 8

Stokes and anti-Stokes orders generated in HD at 77 K and a density of 3 amagat.

Fig. 9
Fig. 9

Stokes and anti-Stokes orders in D2 as a function of density at 77 K, not calibrated for wavelength-dependent detection response.

Fig. 10
Fig. 10

Density dependence of stimulated Raman gain for vibrational and pure rotational scattering in D2 at room temperature [Q(2) and S(2)] and near liquid-nitrogen temperature [Q(0) and S(0)]. The hatched regions indicate the range of uncertainty in the Raman gain that is due to the imprecise values for the self-diffusion coefficient.

Fig. 11
Fig. 11

Density dependence of the second anti-Stokes order in HD at 77 K.

Fig. 12
Fig. 12

Relative intensity as a function of density for ArF excimer laser (pump), first Stokes, and first through third anti-Stokes orders for Raman shifting in D2 at room temperature and 16-mJ pump energy.

Fig. 13
Fig. 13

Relative intensity as a function of density for first Stokes and fourth through eighth anti-Stokes orders for Raman shifting in D2 at room temperature and 30-mJ pump energy.

Fig. 14
Fig. 14

(a) Second anti-Stokes intensity for Raman shifting in HD and (b) two-photon-resonant REMPI excitation spectrum for F 1 Π ( υ = 3 ) X 1 Σ g + ( υ = 0 ) transition in F2 excited with this radiation as a function of two-photon energy. The ion signal is not corrected for the varying excitation intensity.

Fig. 15
Fig. 15

(a) Two-photon-resonant REMPI excitation spectrum for the H H ¯ 1 Σ g + ( υ = 1 , = 0 ) X ( υ = 0 , J = 0 ) transition in H2 (peak indicated by arrow), (b) Two-photon-resonant REMPI excitation spectrum for the D ° 3 / 2 2 P ° 3 / 2 transition in atomic fluorine.

Tables (2)

Tables Icon

Table 2 Line Positions of the Two-Photon Resonances

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G = l / 2 l / 2 I p g d L = 4 g P p tan 1 ( l / b ) ( λ p / n p ) + ( λ s / n s ) ,
P th = 25 λ p π g .
g = 2 λ s 2 Δ N h ν s n s 2 π Δ ν d σ d Ω ,
N ( J ) = ( 2 J + 1 ) g J exp [ E ( J ) / k T ] J ( 2 J + 1 ) g J exp [ E ( J ) / k T ] N 0 ,
d σ d Ω = ( 2 π ν s c ) 4 × [ α υ , J , υ + 1 , J 2 + 4 45 J ( J + 1 ) ( 2 J 1 ) ( 2 J + 3 ) γ υ , J , υ + 1 , J 2 ] ,
d σ d Ω = 2 15 ( 2 π ν s c ) 4 ( J + 1 ) ( J + 2 ) ( 2 J + 1 ) ( 2 J + 3 ) γ υ , J , υ , J + 2 2 .

Metrics