Abstract

Efficient operation of a cw mode-locked singly resonant optical parametric oscillator of noncritically phase-matched KTiOPO4 is demonstrated. The optical parametric oscillator is synchronously pumped by an 82-MHz-repetition-rate mode-locked Ti:sapphire laser with pump-pulse lengths of 1.4 ps. We accomplished tuning of the optical parametric oscillator by tuning the wavelength of the pump laser. A variation of the Ti:sapphire laser wavelength in the range 720 nm < λp < 853 nm tunes the signal wave from 1.052 μm < λ < 1.214 μm and the idler wave from 2.286 < λi < 2.871 μm. We achieved stable operation with transform-limited pulses of 1.2-ps length over the entire tuning range. We obtained 700 mW of maximum average output power at the maximum of the tuning curve for the idler and signal waves, corresponding to an efficiency of 42%.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
    [CrossRef]
  2. D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  3. E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
    [CrossRef]
  4. E. S. Wachman, D. C. Edelstein, C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
    [CrossRef] [PubMed]
  5. G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
    [CrossRef]
  6. Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Tirsapphire laser,” Opt. Lett. 17, 1006 (1992).
    [CrossRef] [PubMed]
  7. W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  8. M. Ebrahimzadeh, G. P. A. Malcolm, A. I. Ferguson, “Continuous-wave mode-locked optical parametric oscillator synchronously pumped by a diode-laser pumped solid-state laser,” Opt. Lett. 17, 183 (1992).
    [CrossRef] [PubMed]
  9. M. J. McCarthy, D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402 (1992).
    [CrossRef] [PubMed]
  10. W. H. Knox, F. A. Beisser, “Two-wavelength synchronous generation of femtosecond pulses with <100-fs jitter,” Opt. Lett. 17, 1012 (1992).
    [CrossRef] [PubMed]
  11. J. D. Bierlein, H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  12. A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
    [CrossRef]
  13. A. M. Weiner, “Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276 (1983).
    [CrossRef]
  14. A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
    [CrossRef]
  15. A. Nebel, R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3laser radiation,” Opt. Lett. 16, 1729 (1991).
    [CrossRef] [PubMed]
  16. A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw mode locked Ti:Al2O3laser radiation,” Opt. Commun. 94, 369 (1992).
    [CrossRef]

1992

G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Tirsapphire laser,” Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

M. Ebrahimzadeh, G. P. A. Malcolm, A. I. Ferguson, “Continuous-wave mode-locked optical parametric oscillator synchronously pumped by a diode-laser pumped solid-state laser,” Opt. Lett. 17, 183 (1992).
[CrossRef] [PubMed]

M. J. McCarthy, D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402 (1992).
[CrossRef] [PubMed]

W. H. Knox, F. A. Beisser, “Two-wavelength synchronous generation of femtosecond pulses with <100-fs jitter,” Opt. Lett. 17, 1012 (1992).
[CrossRef] [PubMed]

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw mode locked Ti:Al2O3laser radiation,” Opt. Commun. 94, 369 (1992).
[CrossRef]

1991

A. Nebel, R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3laser radiation,” Opt. Lett. 16, 1729 (1991).
[CrossRef] [PubMed]

E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

1990

1989

D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

1988

A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
[CrossRef]

1987

A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
[CrossRef]

1983

A. M. Weiner, “Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

Beigang, R.

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw mode locked Ti:Al2O3laser radiation,” Opt. Commun. 94, 369 (1992).
[CrossRef]

A. Nebel, R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3laser radiation,” Opt. Lett. 16, 1729 (1991).
[CrossRef] [PubMed]

Beisser, F. A.

Bierlein, J. D.

Chesnoy, J.

A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
[CrossRef]

Ebrahimzadeh, M.

Edelstein, D. C.

E. S. Wachman, D. C. Edelstein, C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
[CrossRef] [PubMed]

D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Ferguson, A. I.

Finch, A.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

Fini, L.

A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
[CrossRef]

Fu, Q.

G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Tirsapphire laser,” Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

Hanna, D. C.

Kean, P. N.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

Knox, W. H.

Mak, G.

G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Tirsapphire laser,” Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

Malcolm, G. P. A.

McCarthy, M. J.

Mokhtari, A.

A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
[CrossRef]

Nebel, A.

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw mode locked Ti:Al2O3laser radiation,” Opt. Commun. 94, 369 (1992).
[CrossRef]

A. Nebel, R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3laser radiation,” Opt. Lett. 16, 1729 (1991).
[CrossRef] [PubMed]

Pelouch, W. S.

W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

Piskarskas, A.

A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
[CrossRef]

Powers, P. E.

Sibbett, W.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

Smil’gyavichyus, V.

A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
[CrossRef]

Tang, C. L.

W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, D. C. Edelstein, C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
[CrossRef] [PubMed]

D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Umbrasas, R.

A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
[CrossRef]

van Driel, H. M.

G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Tirsapphire laser,” Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

Vanherzeele, H.

Wachman, E. S.

E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, D. C. Edelstein, C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
[CrossRef] [PubMed]

D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

Zhu, X.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

Appl. Phys. Lett.

G. Mak, Q. Fu, H. M. van Driel, “Externally pumped high repetition rate femtosecond infrared optical parametric oscillator,” Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

D. C. Edelstein, E. S. Wachman, C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

IEEE J. Quantum Electron.

A. M. Weiner, “Effect of group-velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, “Noise characterization of mode-locked color-center-laser sources,” IEEE J. Quantum Electron. 26, 1115 (1992).
[CrossRef]

J. Appl. Phys.

E. S. Wachman, W. S. Pelouch, C. L. Tang, “Cw femtosecond pulses tunable in the near- and midinfrared,” J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. Mokhtari, L. Fini, J. Chesnoy, “Efficient frequency mixing of a cw femtosecond laser synchronously pumped by a frequency doubled Nd:YAG laser,” Opt. Commun. 61, 421 (1987).
[CrossRef]

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw mode locked Ti:Al2O3laser radiation,” Opt. Commun. 94, 369 (1992).
[CrossRef]

Opt. Lett.

Sov. J. Quantum Electron.

A. Piskarskas, V. Smil’gyavichyus, R. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. For details see text.

Fig. 2
Fig. 2

Calculation of the differences of the inverse group velocities υgr−1 for KTP as a function of pump wavelength λp. (a) The difference between the pump and the signal, (b) the difference between the pump and the idler, and (c) the difference between the signal and the idler.

Fig. 3
Fig. 3

β as calculated from Eq. (5) for the pump, signal, and idler waves for noncritical type-II phase matching.

Fig. 4
Fig. 4

Angular acceptance L Δ ϕ and L Δ θ for noncritical type-II phase matching in KTP. The areas for different types of phase matching are indicated. The top curve corresponds to the xy plane (ϕ) and the left-hand scale. The bottom curve corresponds to the xz plane (θ) and the right-hand scale.

Fig. 5
Fig. 5

Experimental tuning curves of the KTP OPO as a function of pump wavelength for the idler wave (open circles) and the signal wave (filled circles). The solid curves are the calculated tuning curves obtained by use of the Sellmeier equation given in Ref. 11.

Fig. 6
Fig. 6

Signal- and idler-wave output power as a function of wavelength.

Fig. 7
Fig. 7

Power efficiency η = (Ps + Pi)/Pp as a function of pump wavelength. The maximum efficiency that we achieved was 42%.

Fig. 8
Fig. 8

Signal-wave output power as a function of pump power for the picosecond OPO at a wavelength of λ = 1.14 μm.

Fig. 9
Fig. 9

Intensity autocorrelation trace of the signal pulse at a wavelength of λ = 1.14 μm. The measured autocorrelation width corresponds to an actual width of 1.15 ps.

Fig. 10
Fig. 10

Cross-correlation measurement between ωp and ωs. For details see text.

Fig. 11
Fig. 11

Experimental signal-wave output power of the femtosecond OPO as a function of wavelength.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ υ gr 1 = 1 / υ i 1 / υ j ,
υ g r = c [ n λ 0 ( d n / d λ ) ] 1 .
τ 2 ( z ) = ( 1 + z z d ) 2 τ 0 2 ,
z d = τ 0 2 4 ln ( 2 ) β ,
β = d 2 k d λ 2 = 4 π 2 c 0 ω 3 d 2 n d λ 2 ,
Δ k ( α ) = Δ k | α = α pm + d Δ k d α | α = α pm Δ α + 1 2 d 2 Δ k d α 2 | α = α pm ( Δ α ) 2 + ,
Δ k = 0.886 π L 1 .
L Δ ϕ = n y , λ p ( 0.8859 ) 1 / 2 [ n y , λ p 3 λ p ( 1 n y , λ p 2 1 n x , λ p 2 ) n y , λ s 3 λ s ( 1 n y , λ s 2 1 n x , λ s 2 ) ] 1 / 2 ,
L Δ θ = n y , λ p ( 0.8859 ) 1 / 2 [ n y , λ i 3 λ i ( 1 n x , λ i 2 1 n z , λ i 2 ) ] 1 / 2 .
L Δ θ = n y , λ p 0.8859 λ s [ n x z , λ s 3 sin ( 2 θ ) ( 1 n x , λ s 2 1 n z , λ s 2 ) ] 1 / 2 .

Metrics