Abstract

The details concerning the resonator configuration, crystal parameters, and operating characteristics of high-repetition-rate and high-average-power broadly tunable femtosecond optical parametric oscillators are reviewed and discussed in some detail. We also report new results on an intracavity-doubled optical parametric oscillator with tunability from 580 to 657 nm in the visible and the first, to our knowledge, high-repetition-rate femtosecond optical parametric oscillator with the new nonlinear-optical crystal In:KTiOAsO4, which can potentially tune to 5.3 μm.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
    [CrossRef]
  2. D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  3. E. S. Wachman, D. C. Edelstein, and C. L. Tang, Opt. Lett. 15, 136 (1990).
    [CrossRef]
  4. E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
    [CrossRef]
  5. G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
    [CrossRef]
  6. Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992).
    [CrossRef] [PubMed]
  7. W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  8. E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
    [CrossRef]
  9. W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1581 (1992).
    [CrossRef] [PubMed]
  10. E. C. Cheung and J. M. Liu, J. Opt. Soc. Am. B 8, 1491 (1991).
    [CrossRef]
  11. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]
  12. Equations (2) and (3) are obtained by approximating δiE≈ 0 and Mjμ≈ 1 in Eq. (28) in Ref. 11.
  13. H. Vanherzeele and J. D. Bierlein, Opt. Lett. 17, 982 (1992).
    [CrossRef] [PubMed]
  14. D. C. Edelstein, New Sources and Techniques for Ultrafast Laser Spectroscopy, Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1990).
  15. See, e.g., Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 79.
  16. F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

1992 (7)

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1581 (1992).
[CrossRef] [PubMed]

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

H. Vanherzeele and J. D. Bierlein, Opt. Lett. 17, 982 (1992).
[CrossRef] [PubMed]

1991 (3)

E. C. Cheung and J. M. Liu, J. Opt. Soc. Am. B 8, 1491 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

1990 (1)

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

1986 (1)

F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

Ahmed, F.

F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

Belt, R.

F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

Bierlein, J. D.

Bosenburg, W. R.

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

Cheng, K. L.

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

Cheung, E. C.

Edelstein, D. C.

E. S. Wachman, D. C. Edelstein, and C. L. Tang, Opt. Lett. 15, 136 (1990).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

D. C. Edelstein, New Sources and Techniques for Ultrafast Laser Spectroscopy, Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1990).

Fu, Q.

Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Gashurov, G.

F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

Lane, R. J.

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

Liu, J. M.

Mak, G.

Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Pelouch, W. S.

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1581 (1992).
[CrossRef] [PubMed]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

Powers, P. E.

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Shen, Y. R.

See, e.g., Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 79.

Tang, C. L.

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1581 (1992).
[CrossRef] [PubMed]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, Opt. Lett. 15, 136 (1990).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Ukachi, T.

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

van Driel, H. M.

G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

Vanherzeele, H.

Wachman, E. S.

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, Opt. Lett. 15, 136 (1990).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Appl. Phys. Lett. (3)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett. 60, 542 (1992).
[CrossRef]

F. Ahmed, R. Belt, and G. Gashurov, Appl. Phys. Lett. 60, 839 (1986).

IEEE J. Quantum Electron. (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

J. Appl. Phys. (2)

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Proc. IEEE (1)

See, e.g., C. L. Tang, W. R. Bosenburg, T. Ukachi, R. J. Lane, and K. L. Cheng, Proc. IEEE 80, 365 (1992), and the references therein.
[CrossRef]

Other (3)

D. C. Edelstein, New Sources and Techniques for Ultrafast Laser Spectroscopy, Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1990).

See, e.g., Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 79.

Equations (2) and (3) are obtained by approximating δiE≈ 0 and Mjμ≈ 1 in Eq. (28) in Ref. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of (a) a linear and (b) a ring OPO cavity with (solid lines) or without (dashed lines) intracavity-prism dispersion compensation. The Ti:sapphire pump laser is not shown because its alignment to the crystal depends on whether a type-I or a type-II interaction is chosen and whether the e wave or the o wave is resonated. Note that for a round trip the pulse passes through the crystal twice for the linear cavity and only once for the ring cavity.

Fig. 2
Fig. 2

Crystal orientation, (a) The angles θ and ϕ are defined. (b) The alignment of the KTP crystal for a type-II interaction in which the e wave (ks) is resonated. The pump (kp) and ks lie in the xz plane at a noncollinear angle that is equal to the negative of the walk-off angle ρ. ks is oriented so that its Poynting vector walks onto the pump.

Fig. 3
Fig. 3

The Poynting-vector walk-off of the signal from the pump is plotted as a function of the phase-matching angle for a 780-nm pump and a noncollinear angle of 2.8°.

Fig. 4
Fig. 4

Tuning curves for a type-II interaction in KTP with a noncollinear angle of 2.8°. The tuning curves for three pump wavelengths covering a large part of the Ti:sapphire’s tuning range illustrate the effect of tuning the pump.

Fig. 5
Fig. 5

Ti:sapphire-pumped intracavity-doubled KTP OPO. The Ti:sapphire beam is focused by the R = 25 cm pump mirror (PM) onto the 1.5-mm-thick KTP crystal. The KTP gain crystal is cut at θ = 45°, ϕ = 0° for type-II phase matching in the positive region of the xz plane. The OPO curved mirrors (MC1, MC2) at the gain and frequency doubling foci have radii R = 15 cm and R = 10 cm, respectively. Two pairs of SF-14 prisms (P) spaced 20 cm tip to tip are used for intracavity dispersion compensation. The single SHG output is transmitted through the OPO high reflector (HR) at the doubling focus. OC, output coupler; τp, pulse width.

Fig. 6
Fig. 6

(a) Phase-matching angle versus fundamental wavelength for type-I SHG in BBO. The degenerate point at which the phase-matching angle is minimized and phase matches a single wavelength occurs at 1.47 μm. The SHG phase-matching bandwidth becomes very large near this degenerate point. (b) The SHG phase-matching spectrum for lc = 55 μm BBO crystal (47-μm-thick crystal at Brewster’s angle) that was phase matched for SHG at 1.3 and 1.65 μm.

Fig. 7
Fig. 7

(a) Intracavity-doubled KTP OPO spectra within the demonstrated tuning range of 580–657 nm. (b) Real-time interferometric autocorrelation for 240-mW total SH produced, at 115-fs pulse width, centered at 647 nm. Although not shown, extracavity two-prism dispersion compensation compressed the pulses to 95 fs with no degradation in pulse shape.

Fig. 8
Fig. 8

Tuning curves for a type-II interaction in In:KTA with a noncollinear angle of −2.8°. The tuning curves for three pump wavelengths covering a large part of the Ti:sapphire’s tuning range illustrate the effect of tuning the pump.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ sin ( Δ k l c / 2 ) Δ k l c / 2 ] , Δ k = k p k s k i
Type I d eff = 1 / 2 ( d 15 d 24 ) sin ( 2 θ ) cos ( 2 ϕ ) ,
Type II d eff = [ d 15 sin 2 ( ϕ ) + d 24 cos 2 ( ϕ ) ] sin ( θ ) ,

Metrics