Abstract

We solve analytically the master equation for a quantized cavity mode, finding the time-dependent reduced density operator. The formalism applies to both amplifiers and attenuator, permitting the results to be converted between them by introducing a temperature that can be negative. We obtain a quasi-probability distribution function similar to that obtained by Glauber [ R. J. Glauber, ed., Quantum Optics ( Academic, New York, 1969)] from our reduced density matrix and equate his parameters with the coefficients appearing in the master equation. We illustrate the formalism by calculating variances, expectation values, and photon statistics for the damped simple harmonic oscillator and the linear amplifier.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (64)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription