Abstract

The mode locking of a cw Nd:YAG laser by translation of one of the cavity mirrors is reported. The mode-locking effect is greatly enhanced when an intracavity nonlinear KTP crystal is used. Stable pulse trains with a 60-ps average pulse width are obtained. Theoretical analysis shows that the combined effect of linear phase shift imposed by the moving mirror and the nonlinear phase shift in the Kerr medium gives rise to a saturable-absorber-like behavior in a homogeneously broadened laser. The theory agrees well with the experimental results as well as with results obtained with a Ti:sapphire laser.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10, 51–53 (1967).
    [CrossRef]
  2. A. Bambini, R. Vallauri, “Phase locking of a multimode gas laser by means of low-frequency cavity-length modulation,” J. Appl. Phys. 39, 4864 (1968).
    [CrossRef]
  3. F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
    [CrossRef]
  4. F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
    [CrossRef]
  5. H. A. Haus, “Additive pulse mode locking and Kerr lens mode locking,” in Technical Digest of Eighth International Conference on Ultrafast Phenomena (Ecole Nationale Supérieure des Techniques Avancées, Paris, 1992), paper MA1, 2.
  6. P. M. W. French, S. M. J. Kelly, J. R. Taylor, “Mode locking of a continuous-wave titanium-doped sapphire laser using a linear external cavity,” Opt. Lett. 15, 378 (1990).
    [CrossRef] [PubMed]
  7. J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus, E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett. 14, 48 (1989).
    [CrossRef] [PubMed]
  8. C. C. Cutler, “Why does linear phase shift cause mode locking?” IEEE J. Quantum Electron. 28, 282 (1992).
    [CrossRef]
  9. H. G. Danielmeyer, “Low-frequency dynamics of homogeneous four-level cw lasers,” J. Appl. Phys. 41, 4014 (1970).
    [CrossRef]
  10. W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  11. H. G. Danielmeyer, W. G. Nilson, “Spontaneous single-frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124 (1970).
    [CrossRef]
  12. H. A. Haus, Y. Silberberg, “Laser mode locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
    [CrossRef]
  13. D. J. Kuizenga, A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694 (1970).
    [CrossRef]
  14. A. Penzkofer, “Theoretical analysis of pulse shaping of self-phase modulated pulses in a grating pair compressor,” Opt. Quantum Electron. 23, 685 (1991).
  15. J. Goodberlet, J. Jacobson, J. G. Fujimoto, “Self-starting additive-pulse mode-locked diode-pumped Nd:YAG laser,” Opt. Lett. 15, 504 (1990).
    [CrossRef] [PubMed]

1992

1991

A. Penzkofer, “Theoretical analysis of pulse shaping of self-phase modulated pulses in a grating pair compressor,” Opt. Quantum Electron. 23, 685 (1991).

1990

1989

1988

F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
[CrossRef]

1987

F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

1986

H. A. Haus, Y. Silberberg, “Laser mode locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

1970

D. J. Kuizenga, A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

H. G. Danielmeyer, “Low-frequency dynamics of homogeneous four-level cw lasers,” J. Appl. Phys. 41, 4014 (1970).
[CrossRef]

H. G. Danielmeyer, W. G. Nilson, “Spontaneous single-frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124 (1970).
[CrossRef]

1968

A. Bambini, R. Vallauri, “Phase locking of a multimode gas laser by means of low-frequency cavity-length modulation,” J. Appl. Phys. 39, 4864 (1968).
[CrossRef]

1967

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10, 51–53 (1967).
[CrossRef]

Bambini, A.

A. Bambini, R. Vallauri, “Phase locking of a multimode gas laser by means of low-frequency cavity-length modulation,” J. Appl. Phys. 39, 4864 (1968).
[CrossRef]

Cutler, C. C.

C. C. Cutler, “Why does linear phase shift cause mode locking?” IEEE J. Quantum Electron. 28, 282 (1992).
[CrossRef]

Danielmeyer, H. G.

H. G. Danielmeyer, “Low-frequency dynamics of homogeneous four-level cw lasers,” J. Appl. Phys. 41, 4014 (1970).
[CrossRef]

H. G. Danielmeyer, W. G. Nilson, “Spontaneous single-frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124 (1970).
[CrossRef]

French, P. M. W.

Fujimoto, J. G.

Goodberlet, J.

Hale, P. D.

F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
[CrossRef]

Hall, K. L.

Haus, H. A.

J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus, E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett. 14, 48 (1989).
[CrossRef] [PubMed]

H. A. Haus, Y. Silberberg, “Laser mode locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

H. A. Haus, “Additive pulse mode locking and Kerr lens mode locking,” in Technical Digest of Eighth International Conference on Ultrafast Phenomena (Ecole Nationale Supérieure des Techniques Avancées, Paris, 1992), paper MA1, 2.

Ippen, E. P.

Jacobson, J.

Kelly, S. M. J.

Kowalski, F. V.

F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
[CrossRef]

Kowalski, F. W.

F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Liu, L. Y.

Mark, J.

Nilson, W. G.

H. G. Danielmeyer, W. G. Nilson, “Spontaneous single-frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124 (1970).
[CrossRef]

Pelouch, W. S.

Penzkofer, A.

A. Penzkofer, “Theoretical analysis of pulse shaping of self-phase modulated pulses in a grating pair compressor,” Opt. Quantum Electron. 23, 685 (1991).

Pinckney, L. U.

F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Powers, P. E.

Shattil, S. J.

F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Silberberg, Y.

H. A. Haus, Y. Silberberg, “Laser mode locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

Smith, P. W.

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10, 51–53 (1967).
[CrossRef]

Squier, J. A.

F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Tang, C. L.

Taylor, J. R.

Vallauri, R.

A. Bambini, R. Vallauri, “Phase locking of a multimode gas laser by means of low-frequency cavity-length modulation,” J. Appl. Phys. 39, 4864 (1968).
[CrossRef]

Appl. Phys. Lett.

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10, 51–53 (1967).
[CrossRef]

F. V. Kowalski, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734 (1988).
[CrossRef]

F. W. Kowalski, J. A. Squier, L. U. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

H. G. Danielmeyer, W. G. Nilson, “Spontaneous single-frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124 (1970).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus, Y. Silberberg, “Laser mode locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

C. C. Cutler, “Why does linear phase shift cause mode locking?” IEEE J. Quantum Electron. 28, 282 (1992).
[CrossRef]

J. Appl. Phys.

H. G. Danielmeyer, “Low-frequency dynamics of homogeneous four-level cw lasers,” J. Appl. Phys. 41, 4014 (1970).
[CrossRef]

A. Bambini, R. Vallauri, “Phase locking of a multimode gas laser by means of low-frequency cavity-length modulation,” J. Appl. Phys. 39, 4864 (1968).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

A. Penzkofer, “Theoretical analysis of pulse shaping of self-phase modulated pulses in a grating pair compressor,” Opt. Quantum Electron. 23, 685 (1991).

Other

H. A. Haus, “Additive pulse mode locking and Kerr lens mode locking,” in Technical Digest of Eighth International Conference on Ultrafast Phenomena (Ecole Nationale Supérieure des Techniques Avancées, Paris, 1992), paper MA1, 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental setup.

Fig. 2
Fig. 2

Background-free autocorrelation trace of the mode-locked pulses. For a Gaussian pulse shape, the FWHM is ~60 ps.

Fig. 3
Fig. 3

Frequency deviation of steady-state pulse Δω as a function of the nonlinear broadening Δωm. (a) υ = 1 cm/s; (b) υ = 10 cm/s; (c) υ = 100 cm/s.

Fig. 4
Fig. 4

Steady-state ωp versus Δωm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( ω ) = exp [ ( ω ω 0 Δ ω ) 2 ω p 2 ] ,
g ( ω ) = g ( ω 0 ) exp [ ( ω ω 0 ) 2 ω g 2 ] ,
Δ ω n = 2 2 ln 2 exp ( 1 / 2 ) 16 π n 2 L I 0 λ n c 0 Δ t ,
Δ ω D = ± 4 π υ / λ ,

Metrics