Abstract

Two frequency-doubled diode-pumped Nd:YAG lasers are used to study the hyperfine spectrum of 127I2 near 532 nm by heterodyne spectroscopy. Eight rovibrational transitions between the lowest vibrational level in the ground (X) state to vibrational levels 32–36 in the B state are observed. The measured frequency splittings are used to determine the difference in the hyperfine constants for these transitions. The standard deviation of the theoretical fit to the measured spectra is better than 10 kHz. The root Allan variance of the beat frequency between the I2-locked lasers follows a 1.1×102/τ dependence for measurements times τ > 0.002 s and reaches a minimum value of 2.5 × 10−13 (two-sample beat frequency of 70 Hz) at τ = 32 s. A method for accurately determining the absolute frequency of the iodine lines near 532 nm is proposed.

© 1993 Optical Society of America

Full Article  |  PDF Article

Corrections

Ady Arie and Robert L. Byer, "Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: errata," J. Opt. Soc. Am. B 11, 866- (1994)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-11-5-866

References

  • View by:
  • |
  • |
  • |

  1. S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions du CNRS, Paris, 1978).
  2. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
    [CrossRef]
  3. A. Brillet, P. Cerez, “Laser frequency stabilization by saturated absorption,” J. Phys. (Paris) 42, 73–82 (1981).
    [CrossRef]
  4. “Documents concerning the new definition of the metre,” Metrologia 19, 163 (1984).
  5. S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).
  6. P. Esherick, A. Owyoung, “Polarization feedback stabilization of an injection-seeded Nd:YAG laser for spectroscopic applications,” J. Opt. Soc. Am. B 4, 41–47 (1987).
    [CrossRef]
  7. A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  8. J. J. Snyder, R. K. Raj, D. Bloch, M. Ducloy, “High sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
    [CrossRef] [PubMed]
  9. Opthos Instruments, Inc., 17805 Caddy Drive, Rockville, Md. 20855.
  10. The calibrated iodine cell and the beat-frequency results against a reference helium–neon laser were provided by J. M. Chartier, Bureau International des Poids et Mesures, Pavillon de Breteuil, Sèvres Cedex, France.
  11. M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
    [CrossRef]
  12. S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
    [CrossRef]
  13. H. J. Foth, F. Spieweck, “Hyperfine structure of the R (98) 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett.65, 347–352 (1979).
  14. eQq″= −2452.5837 MHz, C″= 3.162 kHz, a″= 3.66 kHz, d″= 1.58 kHz; see A. Yokozeki, J. S. Munter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
    [CrossRef]
  15. P. R. Bevington, Data Reduction and Error Analysis for Physicists (McGraw Hill, New York, 1969).
  16. Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
    [CrossRef]
  17. M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
    [CrossRef]
  18. M. Glaser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 5, 335–342 (1985).
    [CrossRef]
  19. R. F. Barrow, K. K. Yee, “B–X system of 127I2: rotational analysis and long range potential in the B state,” J. Chem. Soc. Faraday Trans. 2 69, 684–700 (1972).
    [CrossRef]
  20. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring doubler,” Opt. Lett. 16, 992–994 (1991).
    [CrossRef] [PubMed]
  21. D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, H. P. Layer, “Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633 nm) laser,” Opt. Lett. 8, 136–138 (1983). After the submission of this paper a new measurement of the 633-nm iodine-stabilized helium–neon laser frequency with 10−11 accuracy was published: O. Acef, J. J. Zondy, M. Abed, D. G. Rovera, A. H. Gerard, A. Clarion, Ph. Laurent, Y. MilleriouX, P. Juncar, “A CO2 to visible optical frequency chain: accurate measurement of the 473 THz HeNe/I2 laser,” Opt. Commun. 97, 29–34 (1993).
    [CrossRef] [PubMed]
  22. H. R. Telle, D. Meschede, T. W. Hänsch, “Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies,” Opt. Lett. 15, 532–534 (1990).
    [CrossRef] [PubMed]
  23. N. C. Wong, “Optical frequency counting from the UV to the near IR,” Opt. Lett. 17, 1155–1157 (1992).
    [CrossRef] [PubMed]
  24. R. E. Drullinger, K. M. Evenson, D. A. Jennings, F. R. Petersen, J. C. Bergquist, L. Burkins, H. U. Daniel, “A 2.5 THz frequency difference measurement in the visible using metal-insulator metal diodes,” Appl. Phys. Lett. 42, 137–138 (1983).
    [CrossRef]
  25. D. W. Sesko, C. E. Wieman, “High-frequency Fabry–Perot phase modulator,” Appl. Opt. 26, 1693–1695 (1987); M. Kourogi, K. Nakagawa, M. Ohtsu, “A wideband optical frequency comb generator for a highly accurate laser frequency measurement,” presented at the International Quantum Electronics Conference, Vienna, Austria, 1992, paper TuM5.
    [CrossRef] [PubMed]
  26. N. C. Wong, J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [CrossRef]
  27. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
    [CrossRef] [PubMed]

1993 (1)

1992 (2)

1991 (1)

1990 (1)

1987 (2)

1986 (1)

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

1985 (4)

M. Glaser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 5, 335–342 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

N. C. Wong, J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[CrossRef]

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

1984 (1)

“Documents concerning the new definition of the metre,” Metrologia 19, 163 (1984).

1983 (2)

1981 (2)

A. Brillet, P. Cerez, “Laser frequency stabilization by saturated absorption,” J. Phys. (Paris) 42, 73–82 (1981).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

1980 (2)

J. J. Snyder, R. K. Raj, D. Bloch, M. Ducloy, “High sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
[CrossRef] [PubMed]

eQq″= −2452.5837 MHz, C″= 3.162 kHz, a″= 3.66 kHz, d″= 1.58 kHz; see A. Yokozeki, J. S. Munter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

1979 (2)

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

H. J. Foth, F. Spieweck, “Hyperfine structure of the R (98) 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett.65, 347–352 (1979).

1972 (2)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

R. F. Barrow, K. K. Yee, “B–X system of 127I2: rotational analysis and long range potential in the B state,” J. Chem. Soc. Faraday Trans. 2 69, 684–700 (1972).
[CrossRef]

Arie, A.

Barrow, R. F.

R. F. Barrow, K. K. Yee, “B–X system of 127I2: rotational analysis and long range potential in the B state,” J. Chem. Soc. Faraday Trans. 2 69, 684–700 (1972).
[CrossRef]

Bergquist, J. C.

R. E. Drullinger, K. M. Evenson, D. A. Jennings, F. R. Petersen, J. C. Bergquist, L. Burkins, H. U. Daniel, “A 2.5 THz frequency difference measurement in the visible using metal-insulator metal diodes,” Appl. Phys. Lett. 42, 137–138 (1983).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for Physicists (McGraw Hill, New York, 1969).

Bloch, D.

Bordé, Ch. J.

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Brillet, A.

A. Brillet, P. Cerez, “Laser frequency stabilization by saturated absorption,” J. Phys. (Paris) 42, 73–82 (1981).
[CrossRef]

Burkins, L.

R. E. Drullinger, K. M. Evenson, D. A. Jennings, F. R. Petersen, J. C. Bergquist, L. Burkins, H. U. Daniel, “A 2.5 THz frequency difference measurement in the visible using metal-insulator metal diodes,” Appl. Phys. Lett. 42, 137–138 (1983).
[CrossRef]

Byer, R. L.

Camy, G.

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Cerez, P.

A. Brillet, P. Cerez, “Laser frequency stabilization by saturated absorption,” J. Phys. (Paris) 42, 73–82 (1981).
[CrossRef]

Chartier, J. M.

The calibrated iodine cell and the beat-frequency results against a reference helium–neon laser were provided by J. M. Chartier, Bureau International des Poids et Mesures, Pavillon de Breteuil, Sèvres Cedex, France.

Daniel, H. U.

R. E. Drullinger, K. M. Evenson, D. A. Jennings, F. R. Petersen, J. C. Bergquist, L. Burkins, H. U. Daniel, “A 2.5 THz frequency difference measurement in the visible using metal-insulator metal diodes,” Appl. Phys. Lett. 42, 137–138 (1983).
[CrossRef]

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Descoubes, J. P.

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Drullinger, R. E.

Ducloy, M.

Esherick, P.

Evenson, K. M.

Foth, H. J.

H. J. Foth, F. Spieweck, “Hyperfine structure of the R (98) 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett.65, 347–352 (1979).

Gerstenberger, D. C.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions du CNRS, Paris, 1978).

Glaser, M.

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

M. Glaser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 5, 335–342 (1985).
[CrossRef]

Gustafson, E. K.

Hall, J. L.

Hänsch, T. W.

Harrison, J. A.

Jennings, D. A.

Kruzhalov, S. V.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Layer, H. P.

Levenson, M. D.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions du CNRS, Paris, 1978).

Meschede, D.

Munter, J. S.

eQq″= −2452.5837 MHz, C″= 3.162 kHz, a″= 3.66 kHz, d″= 1.58 kHz; see A. Yokozeki, J. S. Munter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Nibler, J. W.

Owyoung, A.

Pakhomov, L. N.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Parfenov, V. A.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Petersen, F. R.

Petrun’kin, V. Yu.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Pollock, C. R.

Raj, R. K.

Schawlow, A. L.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Schiller, S.

Sesko, D. W.

Snyder, J. J.

Spieweck, F.

H. J. Foth, F. Spieweck, “Hyperfine structure of the R (98) 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett.65, 347–352 (1979).

Telle, H. R.

Tye, G. E.

Vigne, J.

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Wallace, R. W.

Wells, J. S.

Wieman, C. E.

Wong, N. C.

Yee, K. K.

R. F. Barrow, K. K. Yee, “B–X system of 127I2: rotational analysis and long range potential in the B state,” J. Chem. Soc. Faraday Trans. 2 69, 684–700 (1972).
[CrossRef]

Yokozeki, A.

eQq″= −2452.5837 MHz, C″= 3.162 kHz, a″= 3.66 kHz, d″= 1.58 kHz; see A. Yokozeki, J. S. Munter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Zahedi, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. E. Drullinger, K. M. Evenson, D. A. Jennings, F. R. Petersen, J. C. Bergquist, L. Burkins, H. U. Daniel, “A 2.5 THz frequency difference measurement in the visible using metal-insulator metal diodes,” Appl. Phys. Lett. 42, 137–138 (1983).
[CrossRef]

Chem. Phys. Lett. (1)

H. J. Foth, F. Spieweck, “Hyperfine structure of the R (98) 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett.65, 347–352 (1979).

J. Chem. Phys. (1)

eQq″= −2452.5837 MHz, C″= 3.162 kHz, a″= 3.66 kHz, d″= 1.58 kHz; see A. Yokozeki, J. S. Munter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

J. Chem. Soc. Faraday Trans. 2 (1)

R. F. Barrow, K. K. Yee, “B–X system of 127I2: rotational analysis and long range potential in the B state,” J. Chem. Soc. Faraday Trans. 2 69, 684–700 (1972).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (Paris) (3)

Ch. J. Bordé, G. Camy, B. Decomps, J. P. Descoubes, J. Vigne, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å—main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

A. Brillet, P. Cerez, “Laser frequency stabilization by saturated absorption,” J. Phys. (Paris) 42, 73–82 (1981).
[CrossRef]

Metrologia (2)

“Documents concerning the new definition of the metre,” Metrologia 19, 163 (1984).

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

Opt. Commun. (1)

M. Glaser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 5, 335–342 (1985).
[CrossRef]

Opt. Lett. (7)

H. R. Telle, D. Meschede, T. W. Hänsch, “Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies,” Opt. Lett. 15, 532–534 (1990).
[CrossRef] [PubMed]

J. J. Snyder, R. K. Raj, D. Bloch, M. Ducloy, “High sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
[CrossRef] [PubMed]

D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, H. P. Layer, “Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633 nm) laser,” Opt. Lett. 8, 136–138 (1983). After the submission of this paper a new measurement of the 633-nm iodine-stabilized helium–neon laser frequency with 10−11 accuracy was published: O. Acef, J. J. Zondy, M. Abed, D. G. Rovera, A. H. Gerard, A. Clarion, Ph. Laurent, Y. MilleriouX, P. Juncar, “A CO2 to visible optical frequency chain: accurate measurement of the 473 THz HeNe/I2 laser,” Opt. Commun. 97, 29–34 (1993).
[CrossRef] [PubMed]

D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring doubler,” Opt. Lett. 16, 992–994 (1991).
[CrossRef] [PubMed]

N. C. Wong, “Optical frequency counting from the UV to the near IR,” Opt. Lett. 17, 1155–1157 (1992).
[CrossRef] [PubMed]

A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
[CrossRef] [PubMed]

J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
[CrossRef] [PubMed]

Opt. Spectrosc. (USSR) (1)

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harmonic frequency of a YAG:Nd laser,” Opt. Spectrosc. (USSR) 59, 414–416 (1985); S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu. Petrun’kin, “Frequency stabilization of a Nd:YAG laser by means of 127I2absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Phys. Rev. A (1)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Rev. Phys. Appl. (1)

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

Other (4)

Opthos Instruments, Inc., 17805 Caddy Drive, Rockville, Md. 20855.

The calibrated iodine cell and the beat-frequency results against a reference helium–neon laser were provided by J. M. Chartier, Bureau International des Poids et Mesures, Pavillon de Breteuil, Sèvres Cedex, France.

P. R. Bevington, Data Reduction and Error Analysis for Physicists (McGraw Hill, New York, 1969).

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions du CNRS, Paris, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup. AOM, acousto-optic modulator; EOM, electro-optic modulator; PBS, polarizing beam splitter; PZT, piezoelectric transducer. The cold finger of each iodine cell was held at a temperature of 0 °C.

Fig. 2
Fig. 2

Root Allan variance between two lasers locked to the a1 line of R(56)32–0. M = 100, ν = 281.63 THz. The minimum value of 2.5 × 10−13 is reached at τ = 32 s and corresponds to a frequency deviation of 70 Hz.

Fig. 3
Fig. 3

Time variation of the beat frequency at 1064 nm (around a center frequency of 23.3 MHz) between two frequency-doubled iodine-locked Nd:YAG lasers measured over a 1-h period.

Fig. 4
Fig. 4

FM saturated absorption spectrum of P(53)32–0 and P(103)34–0. The weak lines near the b1 line of P(103)34–0 belong to the R(53)44–3 transition. Laser temperature, ~30.5 °C.

Fig. 5
Fig. 5

FM saturated absorption spectrum of R(56)32–0. The inset is an expanded scan of the a1 line. The difference between the two side peaks is approximately 21.8 MHz (twice the modulation frequency of the electro-optic modulator). Laser temperature, ~31 °C.

Fig. 6
Fig. 6

FM saturated absorption spectrum of P(83)33–0 and R(134)36–0. Laser temperature, ~39 °C.

Fig. 7
Fig. 7

FM saturated absorption spectrum of R(106)34–0. Laser temperature, ~44 °C.

Fig. 8
Fig. 8

FM saturated absorption spectrum of R(86)35–0. The weak lines in this spectrum belong to the R(44)39–2 line. Laser temperature, ~44.5 °C. The improved resolution is due to the lower (4-MHz) modulation frequency.

Fig. 9
Fig. 9

FM saturated absorption spectrum of P(119)35–0. Laser temperature, ~45.5 °C.

Tables (9)

Tables Icon

Table 1 127I2 Absorption Lines within the Tuning Range of the Frequency-Doubled Nd:YAG Laser

Tables Icon

Table 2 Frequency Spacing (MHz) between Rovibrational Transitions

Tables Icon

Table 3 Measured and Calculated Hyperfine Components of P(53)32–0a

Tables Icon

Table 4 Measured and Calculated Hyperfine Components of R(56)32–0a

Tables Icon

Table 5 Measured and Calculated Hyperfine Components of P(83)33–0a

Tables Icon

Table 6 Measured and Calculated Hyperfine Components of R(134)36–0a

Tables Icon

Table 7 Measured and Calculated Hyperfine Components of R(106)34–0a

Tables Icon

Table 8 Measured and Calculated Hyperfine Components of R(86)33–0a

Tables Icon

Table 9 Standard Deviation of the Fit (σ) and Hyperfine Constants Difference

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( τ ) = 1 2 ν 2 ( M 1 ) i = 1 M 1 ( y i + 1 y i ) 2 ,
f ( a 1 ) + 5 [ f ( a 15 ) f ( a 1 ) ] / 9 ,
f ( a 2 ) + 5 [ f ( a 20 ) f ( a 2 ) ] / 9 .
H hfs = H EQ + H SR + H SSS + H TSS ,
σ = [ 1 N 4 ( x i y i ) 2 ] 1 / 2 ,
σ z = σ [ ( z y i ) 2 ] 1 / 2 ,

Metrics