Abstract

We study a three-dimensional model of interaction of fundamental-frequency and second-harmonic beams in a quadratically nonlinear medium. Numerical simulations of the three-dimensional propagation problem in the presence of diffraction and anisotropy are performed under the paraxial approximation. The role of the transverse effects in various regimes is investigated. We demonstrate the effect of phase modulation and an induced nonlinear focusing during the interaction of the fundamental frequency with the generated second harmonic.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
    [Crossref]
  2. S. A. Akhmanov and R. V. Khoklov, Problems of Nonlinear Optics (Gordon & Breach, New York, 1972).
  3. R. L. Byer and R. L. Herbst, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1978), p. 81.
  4. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1967).
    [Crossref]
  5. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, H. Vanherzeele, and E. W. Van Stryland, Opt. Lett. 17, 28 (1991).
    [Crossref]
  6. H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
    [Crossref] [PubMed]
  7. U. Österberg and W. Margulis, Opt. Lett. 12, 5 (1987).
    [Crossref]
  8. P. Pliszka and P. P. Banerjee, “Self-phase modulation in quadratically nonlinear media,” Opt. Acta (to be published).
  9. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  10. N. C. Kothari and X. Carlotti, J. Opt. Soc. Am. B 5, 756 (1988).
    [Crossref]
  11. J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
    [Crossref]
  12. M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
    [Crossref]
  13. R. C. Eckardt and J. Reinties, IEEE J. Quantum Electron. QE-20, 1178 (1984).
    [Crossref]
  14. F. P. Mattar and M. C. Newstein, IEEE J. Quantum Electron. QE-13, 507 (1977).
    [Crossref]
  15. S. K. Turitsin, Sov. Phys. JETP 64, 979 (1986).

1991 (1)

1990 (1)

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

1988 (2)

1987 (1)

U. Österberg and W. Margulis, Opt. Lett. 12, 5 (1987).
[Crossref]

1986 (1)

S. K. Turitsin, Sov. Phys. JETP 64, 979 (1986).

1984 (1)

R. C. Eckardt and J. Reinties, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[Crossref]

1977 (1)

F. P. Mattar and M. C. Newstein, IEEE J. Quantum Electron. QE-13, 507 (1977).
[Crossref]

1976 (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
[Crossref]

1967 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1967).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov and R. V. Khoklov, Problems of Nonlinear Optics (Gordon & Breach, New York, 1972).

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Bakker, H. J.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

Banerjee, P. P.

P. Pliszka and P. P. Banerjee, “Self-phase modulation in quadratically nonlinear media,” Opt. Acta (to be published).

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1967).
[Crossref]

Byer, R. L.

R. L. Byer and R. L. Herbst, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1978), p. 81.

Carlotti, X.

DeSalvo, R.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Eckardt, R. C.

R. C. Eckardt and J. Reinties, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[Crossref]

Feit, M. D.

M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
[Crossref]

J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
[Crossref]

Fleck, J. A.

M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
[Crossref]

J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
[Crossref]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Hagan, D. J.

Herbst, R. L.

R. L. Byer and R. L. Herbst, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1978), p. 81.

Khoklov, R. V.

S. A. Akhmanov and R. V. Khoklov, Problems of Nonlinear Optics (Gordon & Breach, New York, 1972).

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1967).
[Crossref]

Kothari, N. C.

Kuipers, L.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

Margulis, W.

U. Österberg and W. Margulis, Opt. Lett. 12, 5 (1987).
[Crossref]

Mattar, F. P.

F. P. Mattar and M. C. Newstein, IEEE J. Quantum Electron. QE-13, 507 (1977).
[Crossref]

Morris, J. R.

J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
[Crossref]

Newstein, M. C.

F. P. Mattar and M. C. Newstein, IEEE J. Quantum Electron. QE-13, 507 (1977).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Österberg, U.

U. Österberg and W. Margulis, Opt. Lett. 12, 5 (1987).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

Pliszka, P.

P. Pliszka and P. P. Banerjee, “Self-phase modulation in quadratically nonlinear media,” Opt. Acta (to be published).

Reinties, J.

R. C. Eckardt and J. Reinties, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[Crossref]

Sheik-Bahae, M.

Stegeman, G.

Turitsin, S. K.

S. K. Turitsin, Sov. Phys. JETP 64, 979 (1986).

Van Stryland, E. W.

Vanherzeele, H.

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
[Crossref]

IEEE J. Quantum Electron. (2)

R. C. Eckardt and J. Reinties, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[Crossref]

F. P. Mattar and M. C. Newstein, IEEE J. Quantum Electron. QE-13, 507 (1977).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1967).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 6, 1918 (1962).
[Crossref]

Phys. Rev. A (1)

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. K. Turitsin, Sov. Phys. JETP 64, 979 (1986).

Other (4)

S. A. Akhmanov and R. V. Khoklov, Problems of Nonlinear Optics (Gordon & Breach, New York, 1972).

R. L. Byer and R. L. Herbst, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1978), p. 81.

P. Pliszka and P. P. Banerjee, “Self-phase modulation in quadratically nonlinear media,” Opt. Acta (to be published).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wave-vector surfaces for the wave numbers k1 and k2/2. Θ0 is the angle corresponding to synchronous wave vectors, and Θ is the angle corresponding to a particular component of the angular spectrum of E1; ρ is the walk-off angle between k2 and the Poynting vector S2.

Fig. 2
Fig. 2

(a) Transverse profile of amplitude A1 for the plane-wave limit (κ < 10−3) and ΔL = 0 for different propagation distances z/Inl. (b) On-axis intensity and power of the FF for κ = 0 and ΔL = 0.

Fig. 3
Fig. 3

(a) Transverse profile of amplitudes A1 and A2 for κ = 0 and ΔLnl = 4 for different propagation distances z/Lnl. (b) Powers P1 of the FF beam and P2 of the SH beam versus z for κ = 0 and ΔLnl = 0.5.

Fig. 4
Fig. 4

(a) Transverse profile of amplitude A1 for κ = 1/40 and ΔL = 0 for different propagation distances z/Lnl. (b) On-axis intensities I1 (crosses) and I2 (squares) and powers P1 and P2 of FF and SH radiation (in atomic units) for κ ≈ 1/50 and ΔL = 0.

Fig. 5
Fig. 5

On-axis phases of the FF for different values of the parameters κ and Δ. The curves illustrate the following: a, phase instability in the absence of diffraction (κ = 0, Δ = 0); b, weak self-defocusing in the plane-wave limit (κ = 0, Δ = 10); c, initial diffraction followed by phase instability for κ = 1/20 and Δ = 0; d, same as c but for κ = 1/40 and Δ = 0; e, self-defocusing and diffraction in the weak nonlinearity regime (κ = 1/20, Δ = 10). The distance of propagation is given in units of a typical diffraction length Ld, since the specific values of Lnl and Ld are different for each curve. For curve d the value of Lnl is half the value of that of curve c.

Fig. 6
Fig. 6

(a) Total power and (b) on-axis intensity of the SH beam as a function of the propagation distance for different widths of the input beam (given in wavelengths). The total power of the input FF is kept fixed (at 2500 in the units given). For the w = 80λ case the distance z = 1 corresponds to Lnl and κ = 1, while, for w = 10λ, κ ≈ 8 holds since κ ~ 1/w.

Fig. 7
Fig. 7

Transverse profiles of amplitudes A1 and A2 for κ = 1/20 and ΔL = 10 for different propagation distances z/Lnl.

Fig. 8
Fig. 8

Transverse profiles (cross section along the x axis) of the FF and the SH in the presence of anisotropy in the x direction.

Fig. 9
Fig. 9

Gray-scale intensity distribution map for the FF and the SHG waves for the case of focused input beam and anisotropy (low-intensity regime): (a) the case ρ ≠ 0 and Δ = 0, (b) beams at the exit plane in the case ρ ≠ 0 and Δ ≠ 0. Note the coincidence of the focal point for the FF with the maximum intensity of the SH. The vertical and horizontal scales in the zx cross section differ by a factor of the order of Lnl/w, and ρ is of the order of w/Ld.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

E 1 z = i σ exp ( i Δ z ) E 1 * E 2 i 2 k 1 2 E 1 ,
( z ρ x ) E 2 = i σ exp ( i Δ z ) E 1 2 1 2 k 2 2 E 2 ,
P 1 + P 2 = const ., P i = d x d y | E i | 2 ,
E 1 = 2 E 1 , E 2 = exp ( i Δ z ) E 2 ,
E j z = i δ H δ E j * .
H = d x d y σ E 1 2 2 E 2 * + c . c . + 1 2 k 1 | E 1 | 2 + 1 2 k 2 | E 2 | 2 | E 2 | 2 Δ i ρ ( E 2 * E 2 x c . c . )
E 2 ( x , y , z ) = c ( z ) E 1 2 ( x , y , z ) .
[ L ˆ ( z , λ ) ψ ] 2 L ˆ ( z , λ / 2 ) ψ 2 ,
I 2 ( z ) = | E 2 | 2 = I 1 ( 0 ) υ 2 sn 2 [ ( z / l nl ) υ , υ 4 ] ,
υ 1 = Δ l nl / 4 + [ 1 + ( Δ l nl / 4 ) 2 ] 1 / 2 , l nl = l nl ( x , y ) = k 1 / σ | E 1 | ( x , y , 0 ) , l nl ( 0 , 0 ) = L nl , I 1 ( 0 ) = | E 1 | 2 ( x , y , 0 ) ,
Λ = [ Δ 4 + ( 1 l nl 2 + Δ 2 16 ) 1 / 2 ] 1 .
ϕ 1 z = σ A 2 cos θ ( ϕ 1 ) 2 2 k 1 + 2 A 1 2 k 1 A 1 ,
ϕ 2 z = σ A 1 2 A 2 cos θ ( ϕ 2 ) 2 2 k 2 + 2 A 2 2 k 2 A 2 ( sin ρ ) ϕ 2 x ,
E j ( x , y , z ) = exp [ i z ( 2 / 2 k j + N ˆ j ) ] E j ( x , y , 0 ) , j = 1 , 2 ,
exp [ i z ( 2 / 2 k j + N ˆ j ) ] exp [ i z ( 2 / 2 k j ) ] exp ( i z N ˆ j ) .
E ˜ 2 ( k 2 ) : : d 3 k a d 3 k b E ˜ 1 ( k a ) E ˜ 1 ( k b ) × δ ( k 2 k a k b ) δ [ k 2 2 4 ω 2 c 2 n e 2 2 ( k 2 ) ] × δ [ k a 2 ω 2 c 2 n o 1 2 ( k a ) ] δ [ k b 2 ω 2 c 2 n o 1 2 ( k b ) ] ,
E ˜ 1 ( k 1 ) : : d 3 k a d 3 k b E ˜ 1 ( k a ) E ˜ 2 ( k b ) × δ ( k 1 + k a k b ) δ [ k 1 2 ω 2 c 2 n e 2 2 ( k 2 ) ] × δ [ k a 2 ω 2 c 2 n o 1 2 ( k a ) ] δ [ k b 2 4 ω 2 c 2 n o 1 2 ( k b ) ] .
E ˜ 1 ( k ) : : exp [ i z Δ ( k ) ] [ E ˜ 1 * ( k ) * E ˜ 2 ] ( k ) ,
E ˜ 2 ( k ) : : exp [ i z Δ ( k ) ] ( E ˜ 1 * E ˜ 1 ) ( k ) ,
Δ ( k ) = Δ ( 0 ) + k 1 cos ( Θ Θ 0 ) [ 1 ( n e 2 n o 1 ) 2 ] ( 1 cos 2 Θ cos 2 Θ ) Δ ( 0 ) + α 1 k x + α 2 k x 2 + β 2 k y 2 ,
σ exp ( i Δ z ) [ ( E 2 + ρ z E 2 x ) E 1 * + E 2 ρ z E 1 * x ] ,
σ exp ( i Δ z ) E 1 ( E 1 2 ρ z E 1 x ) ,
E 1 z = i 2 k 1 2 E 1 ,
( z ρ x ) E 2 = i σ exp ( i Δ z ) E 1 2 i 2 k 2 2 E 2 .
E 1 2 ( r , z ) = E 1 ( 0 , z ) E 1 ( 2 r , z ) ,
E ˜ j ( k , z ) = 1 2 π exp ( i k r ) E j ( r , z ) d 2 r ,
E ˜ 2 z = ( i k 2 2 k 2 i ρ k x ) E ˜ 2 i σ 2 exp ( i Δ z ) E 1 ( 0 , z ) E ˜ 1 ( k 2 ) .
E ˜ 2 ( k , z ) = i σ 2 0 z exp [ i ( k 2 2 k 2 ρ k x ) ( z z ) i Δ z ] × E 1 ( 0 , z ) E ˜ 1 ( k 2 , z ) d z
= i σ 2 exp ( ρ k x z ) E ˜ 1 ( k 2 , z ) × 0 z exp [ i ( Δ k 2 4 k 2 k 1 Δ + ρ k x ) z ] E 1 ( 0 , z ) d z .
E ˜ 1 ( k 2 , z ) = exp [ i k 2 4 k 1 ( z z ) ] E ˜ 1 ( k 2 , z ) .
E 2 ( r , z ) = [ i σ E 1 ( 0 , z ) 0 z E 1 ( 0 , z ) exp ( i Δ z ) d z ] E 1 2 ( r , z ) = c ( z ) E 1 2 ( r , z ) ,
E 1 z = i 1 2 k 1 2 E 1 i χ ( z ) E 1 | E 1 | 2 ,
E j ( r , z ) = E j , 0 ( z ) + δ j ( r , z ) .
d δ ˜ 1 ( k ) d z = i k 2 2 k 1 δ ˜ 1 ( k ) i σ [ E 1 , 0 * δ ˜ 2 ( k ) + δ ˜ 1 * ( k ) ] ,
d δ ˜ 2 ( k ) d z = ( i k 2 2 k 2 + i Δ ) δ ˜ 2 ( k ) 2 i σ E 1 , 0 δ ˜ 1 ( k ) .
d d z δ ˜ = M ˆ δ ˜ , δ ˜ = ( x ˜ 1 , y ˜ 1 , x ˜ 2 , y ˜ 2 ) T ,
M ˆ = [ b 2 a 2 + χ 1 b 1 a 1 a 2 χ 1 b 2 a 1 b 1 2 b 1 2 a 1 0 χ 2 2 a 1 2 b 1 χ 2 0 ] , χ 1 = k 2 / 2 k 1 , χ 2 = Δ + k 2 / 2 k 2 .
λ = ± ( 1 / 2 ) { D ± [ D 2 4 ( 4 a 1 4 4 a 1 2 χ 1 χ 2 a 2 2 χ 2 2 + χ 1 2 χ 2 2 ) ] 1 / 2 } 1 / 2 , D = 4 a 1 2 + a 2 2 χ 1 2 χ 2 2 .
λ = ± [ | σ E 2 | 2 ( k 2 / 2 k 1 ) 2 ] 1 / 2 , ± i k 2 / 2 k 2 .

Metrics