Abstract

New experimental third-order sum-frequency generation (TSFG) spectra are presented for CCl4 droplets. The droplet radii are discretely tuned over a size range in increments of 1 part in 6000. For each droplet radius only one or a few of the many possible TSFG peaks are dominant. Both low- and high-resolution TSFG spectra of D2O droplets are measured. The possible generating waves are the stimulated Raman radiation [known to occur at the morphology-dependent resonance (MDR) frequencies] and the internal fields at the incident laser frequency, which is usually not on a MDR. The experimental findings suggest that the resultant TSFG frequency must be near an output MDR. A physical description of the third-harmonic generation (THG) process in droplets is presented. MDR’s are treated as traveling waves that rotate in the azimuthal direction. Their azimuthal phase velocities are derived, and the concept of phase matching among the MDR’s is presented. The relation between phase matching and spatial overlap of MDR’s is discussed. Reasons are presented for the low probability of having the THG or TSFG frequency on or near a MDR.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-M. Tzeng, K. G. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  2. S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486 (1986).
    [CrossRef] [PubMed]
  3. H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery mode laser,” Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  4. A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Time-resolved spectroscopy of laser emission from dye-doped droplets,” Opt. Lett. 14, 214 (1989).
    [CrossRef] [PubMed]
  5. J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  6. A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
    [CrossRef] [PubMed]
  7. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079 (1990).
    [CrossRef]
  8. S.-X. Qian, R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  9. J.-Z. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151 (1989); J.-Z. Zhang, G. Chen, R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108 (1990).
    [CrossRef]
  10. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shifts,” J. Opt. Soc. Am. B 4, 2004 (1987); H. M. Lai, P. T. Leung, K. Young, “Electromagnetic decay into a narrow resonance in an optical cavity,” Phys. Rev. A 37, 1597 (1988).
    [CrossRef] [PubMed]
  11. S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.
  12. S.-X. Qian, J. B. Snow, R. K. Chang, “Coherent Raman mxing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets,” Opt. Lett. 10, 499 (1985); R. K. Chang, S.-X. Qian, J. Eickmans, “Stimulated Raman scattering, phase modulation, and coherent anti-Stokes Raman scattering from single micrometer-size liquid droplets,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
    [CrossRef] [PubMed]
  13. D. H. Leach, R. K. Chang, W. P. Acker, “Stimulated anti-Stokes Raman scattering in microdroplets,” Opt. Lett. 17, 387 (1992).
    [CrossRef] [PubMed]
  14. W. P. Acker, D. H. Leach, R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14, 402 (1989).
    [CrossRef] [PubMed]
  15. D. H. Leach, W. P. Acker, R. K. Chang, “The effect of the phase velocity and spatial overlap of spherical resonances on sum-frequency generation in droplets,” Opt. Lett. 15, 894 (1990).
    [CrossRef] [PubMed]
  16. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
    [CrossRef]
  17. E. E. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166 (1992).
    [CrossRef] [PubMed]
  18. W. P. Acker, B. Yip, D. H. Leach, R. K. Chang, “The use of a charge-coupled device and position sensitive resistive anode detector for multiorder spontaneous Raman spectroscopy from silicon,” J. Appl. Phys. 64, 2263 (1988).
    [CrossRef]
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983); P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  20. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
    [CrossRef] [PubMed]
  21. G. Chen, R. K. Chang, S. C. Hill, P. W. Barber, “Frequency splitting of degenerate spherical cavity modes: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
    [CrossRef] [PubMed]
  22. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  23. R. G. Pinnick, A. Biswas, P. Chy̌lek, R. L. Armstrong, H. Latifi, E. Creegan, V. Sriwastava, M. Jarzembski, G. Fernández, “Stimulated Raman scattering in micrometer-sized droplets: time-resolved measurements,” Opt. Lett. 13, 494 (1988).
    [CrossRef] [PubMed]
  24. G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the angular distribution of stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117 (1991).
    [CrossRef] [PubMed]
  25. J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
    [CrossRef]
  26. H. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  27. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  28. R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
    [CrossRef]
  29. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100 (1975).
    [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 10.
  31. S. C. Hill, D. H. Leach, R. K. Chang, “Third-order sum-frequency generation in droplets: model with numerical results for third-harmonic generation,” J. Opt. Soc. Am. B 10, 16–33 (1993).
    [CrossRef]

1993 (1)

1992 (2)

1991 (2)

1990 (3)

1989 (5)

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
[CrossRef]

J.-Z. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151 (1989); J.-Z. Zhang, G. Chen, R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108 (1990).
[CrossRef]

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Time-resolved spectroscopy of laser emission from dye-doped droplets,” Opt. Lett. 14, 214 (1989).
[CrossRef] [PubMed]

W. P. Acker, D. H. Leach, R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14, 402 (1989).
[CrossRef] [PubMed]

1988 (3)

1987 (1)

1986 (3)

H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery mode laser,” Opt. Lett. 11, 614 (1986).
[CrossRef] [PubMed]

S.-X. Qian, R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486 (1986).
[CrossRef] [PubMed]

1985 (2)

1984 (1)

1980 (1)

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

1975 (1)

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
[CrossRef]

1971 (1)

Acker, W. P.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 10.

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
[CrossRef]

Armstrong, R. L.

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
[CrossRef]

Barber, P. W.

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Biswas, A.

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983); P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Campillo, A. J.

Chang, R. K.

S. C. Hill, D. H. Leach, R. K. Chang, “Third-order sum-frequency generation in droplets: model with numerical results for third-harmonic generation,” J. Opt. Soc. Am. B 10, 16–33 (1993).
[CrossRef]

D. H. Leach, R. K. Chang, W. P. Acker, “Stimulated anti-Stokes Raman scattering in microdroplets,” Opt. Lett. 17, 387 (1992).
[CrossRef] [PubMed]

G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the angular distribution of stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117 (1991).
[CrossRef] [PubMed]

G. Chen, R. K. Chang, S. C. Hill, P. W. Barber, “Frequency splitting of degenerate spherical cavity modes: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

D. H. Leach, W. P. Acker, R. K. Chang, “The effect of the phase velocity and spatial overlap of spherical resonances on sum-frequency generation in droplets,” Opt. Lett. 15, 894 (1990).
[CrossRef] [PubMed]

W. P. Acker, D. H. Leach, R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14, 402 (1989).
[CrossRef] [PubMed]

J.-Z. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151 (1989); J.-Z. Zhang, G. Chen, R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108 (1990).
[CrossRef]

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

W. P. Acker, B. Yip, D. H. Leach, R. K. Chang, “The use of a charge-coupled device and position sensitive resistive anode detector for multiorder spontaneous Raman spectroscopy from silicon,” J. Appl. Phys. 64, 2263 (1988).
[CrossRef]

S.-X. Qian, R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, “Coherent Raman mxing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets,” Opt. Lett. 10, 499 (1985); R. K. Chang, S.-X. Qian, J. Eickmans, “Stimulated Raman scattering, phase modulation, and coherent anti-Stokes Raman scattering from single micrometer-size liquid droplets,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef] [PubMed]

H.-M. Tzeng, K. G. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

Chen, G.

Ching, S. C.

Chowdhury, D. Q.

Chy?lek, P.

Creegan, E.

Eversole, J. D.

Fernández, G.

Gloge, D.

Harrick, H. J.

H. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

Hill, S. C.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983); P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Huston, A. L.

Jarzembski, M.

Justus, B. J.

Khaled, E. E.

Lai, H. M.

Latifi, H.

Leach, D. H.

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Lin, H.-B.

Long, M. B.

Moser, P. J.

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

Murphy, J. D.

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

Nagl, A.

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

Pinnick, R. G.

Qian, S.-X.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
[CrossRef]

Snow, J. B.

Sriwastava, V.

Stolen, R. H.

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
[CrossRef]

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486 (1986).
[CrossRef] [PubMed]

H.-M. Tzeng, K. G. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

Überall, H.

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

Wall, K. G.

Yip, B.

W. P. Acker, B. Yip, D. H. Leach, R. K. Chang, “The use of a charge-coupled device and position sensitive resistive anode detector for multiorder spontaneous Raman spectroscopy from silicon,” J. Appl. Phys. 64, 2263 (1988).
[CrossRef]

Young, K.

Zhang, J.-Z.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308 (1974). Note that partially degenerate four-wave mixing (when two of the four input waves have the same frequency) was originally called three-wave mixing.
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. D. Murphy, P. J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere,” IEEE Trans. Antennas Propag. AP-28, 924 (1980).
[CrossRef]

J. Appl. Phys. (2)

W. P. Acker, B. Yip, D. H. Leach, R. K. Chang, “The use of a charge-coupled device and position sensitive resistive anode detector for multiorder spontaneous Raman spectroscopy from silicon,” J. Appl. Phys. 64, 2263 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900 (1989); J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Opt. Soc. Am. A 64, 1632 (1988).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (12)

H.-M. Tzeng, K. G. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, “Coherent Raman mxing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets,” Opt. Lett. 10, 499 (1985); R. K. Chang, S.-X. Qian, J. Eickmans, “Stimulated Raman scattering, phase modulation, and coherent anti-Stokes Raman scattering from single micrometer-size liquid droplets,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef] [PubMed]

H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery mode laser,” Opt. Lett. 11, 614 (1986).
[CrossRef] [PubMed]

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Time-resolved spectroscopy of laser emission from dye-doped droplets,” Opt. Lett. 14, 214 (1989).
[CrossRef] [PubMed]

W. P. Acker, D. H. Leach, R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14, 402 (1989).
[CrossRef] [PubMed]

D. H. Leach, W. P. Acker, R. K. Chang, “The effect of the phase velocity and spatial overlap of spherical resonances on sum-frequency generation in droplets,” Opt. Lett. 15, 894 (1990).
[CrossRef] [PubMed]

G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the angular distribution of stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117 (1991).
[CrossRef] [PubMed]

G. Chen, R. K. Chang, S. C. Hill, P. W. Barber, “Frequency splitting of degenerate spherical cavity modes: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

D. H. Leach, R. K. Chang, W. P. Acker, “Stimulated anti-Stokes Raman scattering in microdroplets,” Opt. Lett. 17, 387 (1992).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, P. Chy̌lek, R. L. Armstrong, H. Latifi, E. Creegan, V. Sriwastava, M. Jarzembski, G. Fernández, “Stimulated Raman scattering in micrometer-sized droplets: time-resolved measurements,” Opt. Lett. 13, 494 (1988).
[CrossRef] [PubMed]

Phys. Rev. A (2)

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S.-X. Qian, R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Science (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486 (1986).
[CrossRef] [PubMed]

Other (4)

H. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983); P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Detected SRS spectra from CCl4 droplets plotted as function of the Raman shift. The integer j (above the points) corresponds to the frequency ωjs = ωLvib, where ωvib = 459 cm−1 is the frequency of the ν1 vibrational mode of CCl4. Cascade multiorder Stokes SRS up to j = 20 is detected. Combinations and overtones of the ν2 and ν4 vibrational modes are also detected. The incident laser wavelength is λL = 0.532 μm, and the detector is a CCD.

Fig. 2
Fig. 2

Detected TSFG spectra from CCl4 droplets at 20 consecutive fosc (shown on the vertical abscissa) starting at fosc = 50.5 kHz and ending at fosc = 50.975 kHz in 25-Hz increments. The horizontal abscissa indicates wavelength decreasing toward λL/3, and the series of dotted lines correspond to ωTSFG = 3ωLvib, where ωvib = 459 cm−1 is the frequency of the ν1 vibrational mode of CCl4 and p is an integer. The incident laser wavelength is λL = 1.064 μm, and the detector is a position-sensitive resistive-anode device referred to as a Mepsicron.

Fig. 3
Fig. 3

SRS spectra from H2O droplets. Each high-resolution spectrum around the O–H stretching region is for a different droplet size near a ≈ 37 μm, which corresponds to x ≈ 350. The incident laser wavelength is λL = 0.532 μm, and the detector is a CCD.

Fig. 4
Fig. 4

Detected low-spectral-resolution TSFG spectra in the UV and visible range from D2O droplets (irradiated by a laser with λL = 1.064 μm and detected by a Mepsicron). TSFG spectra are shown for five different droplet sizes (a)–(e), corresponding to five different droplet generator frequencies (fosc). The TSFG peaks are labeled according to their frequency shifts of vib from the THG of the laser at 3ωL (28195 cm−1). For D2O droplets, ωvib ≈ 2450 cm−1.

Fig. 5
Fig. 5

Detected high-spectral-resolution TSFG spectra from D2O droplets (irradiated by a laser with λL = 1.064 μm) in the three separate spectral regions of ωTSFG = 3ωLvib. The spectral regions are designated by (a) p = 1, (b) p = 2, and (c) p = 3. Spectra at three different droplet sizes (corresponding to three different fosc) are shown for each spectral region.

Fig. 6
Fig. 6

Radial variation of the internal electrical fields of MDR’s with TE polarization, x1 ≈ 131, and several l’s. The index of refraction of the liquid is assumed to be m(ω) = 1.32.

Fig. 7
Fig. 7

Normalized phase velocity vn,l(ω)/c of MDR’s (with n = m and different n’s and l’s) plotted as a function of x (lower abscissa). For a droplet radius of 30 μm, vϕ(ω)/c is plotted as a function of wave number (upper abscissa). In order to illustrate the dispersion of the MDR’s, we assume that the liquid is dispersionless, with m(ω) = 1.35.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω ϕ ( ω ) = d ϕ / d t = ω / m = ( x n , l / a m ) c .
v ϕ ( ω ) = a Ω ϕ ( ω ) = ( x n , l / m ) c .
l coh = ( λ 1 / 6 ) m ϕ ( 3 ω 1 ) - m ϕ ( ω 1 ) - 1 = π a / m 3 - 3 m 1 ,

Metrics