Abstract

High-resolution Fourier-transform spectra of a 232ThI4230ThI4 electrodeless discharge lamp were obtained between 5600 and 36 000 cm−1. These spectra were used to measure the splittings of more than 800 isotopic Th ii doublets to an accuracy of about 0.001 cm−1. From these isotope shifts, 184 even- and 167 odd-level isotope shifts were determined. Level isotope shifts were determined for all known levels below 20 000 cm-, except for the even J = ½ level at 19 594 cm−1. An empirical correlation of the level isotope shifts with a theoretical, configuration-mixing calculation was used to derive pure-configuration level isotope shifts.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. II. Neutral thorium,” J. Opt. Soc. Am. 73, 694–701 (1983).
    [CrossRef]
  2. J. W. Brault, “Rapid-scan high-resolution Fourier Spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (A) (1976).
  3. R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
    [CrossRef]
  4. R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. 80A, 221–358 (1976).
    [CrossRef]
  5. B. A. Palmer, R. Engleman, “Atlas of the thorium spectrum,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).
  6. R. Zalubas, C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. 78A, 163–246 (1974).
    [CrossRef]
  7. B. A. Palmer, R. Engleman, “A new program for the least–squares calculation of atomic energy levels,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).
  8. An isotope shift of zero was assigned to the lowest-lying level (an even-parity d2s in Th ii). Isotope shifts are given as the difference between the wave numbers of the heavier and the lighter isotope, i.e., σ(232Th) − σ(230Th).
  9. G. L. Stukenbroeker, J. R. McNally, “Isotope shifts in thorium—Th230 and Th232,” J. Opt. Soc. Am. 43, 36–41 (1953).
    [CrossRef]
  10. E. A. Vernyi, V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).
  11. E. A. Vernyi, V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).
  12. N. Minsky, “Classification and interpretation of the spectrum of Th II,” Ph.D. dissertation (Hebrew University, Jerusalem, 1969).
  13. All f electrons in our Th ii notation have principal quantum number n= 5, all d’s have n= 6, and all s’s and p’s have n= 7.

1983 (1)

1980 (1)

1976 (2)

J. W. Brault, “Rapid-scan high-resolution Fourier Spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (A) (1976).

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. 80A, 221–358 (1976).
[CrossRef]

1974 (1)

R. Zalubas, C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. 78A, 163–246 (1974).
[CrossRef]

1960 (1)

E. A. Vernyi, V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

1959 (1)

E. A. Vernyi, V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

1953 (1)

Brault, J. W.

J. W. Brault, “Rapid-scan high-resolution Fourier Spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (A) (1976).

Corliss, C. H.

R. Zalubas, C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. 78A, 163–246 (1974).
[CrossRef]

Egorov, V. N.

E. A. Vernyi, V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

E. A. Vernyi, V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

Engleman, R.

R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. II. Neutral thorium,” J. Opt. Soc. Am. 73, 694–701 (1983).
[CrossRef]

R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[CrossRef]

B. A. Palmer, R. Engleman, “A new program for the least–squares calculation of atomic energy levels,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

B. A. Palmer, R. Engleman, “Atlas of the thorium spectrum,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

McNally, J. R.

Minsky, N.

N. Minsky, “Classification and interpretation of the spectrum of Th II,” Ph.D. dissertation (Hebrew University, Jerusalem, 1969).

Palmer, B. A.

R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. II. Neutral thorium,” J. Opt. Soc. Am. 73, 694–701 (1983).
[CrossRef]

R. Engleman, B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[CrossRef]

B. A. Palmer, R. Engleman, “A new program for the least–squares calculation of atomic energy levels,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

B. A. Palmer, R. Engleman, “Atlas of the thorium spectrum,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

Stukenbroeker, G. L.

Vernyi, E. A.

E. A. Vernyi, V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

E. A. Vernyi, V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

Zalubas, R.

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. 80A, 221–358 (1976).
[CrossRef]

R. Zalubas, C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. 78A, 163–246 (1974).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Res. Nat. Bur. Stand. (2)

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. 80A, 221–358 (1976).
[CrossRef]

R. Zalubas, C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. 78A, 163–246 (1974).
[CrossRef]

Opt. Spectrosc. (2)

E. A. Vernyi, V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

E. A. Vernyi, V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

Other (5)

N. Minsky, “Classification and interpretation of the spectrum of Th II,” Ph.D. dissertation (Hebrew University, Jerusalem, 1969).

All f electrons in our Th ii notation have principal quantum number n= 5, all d’s have n= 6, and all s’s and p’s have n= 7.

B. A. Palmer, R. Engleman, “A new program for the least–squares calculation of atomic energy levels,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

An isotope shift of zero was assigned to the lowest-lying level (an even-parity d2s in Th ii). Isotope shifts are given as the difference between the wave numbers of the heavier and the lighter isotope, i.e., σ(232Th) − σ(230Th).

B. A. Palmer, R. Engleman, “Atlas of the thorium spectrum,” (Los Alamos National Laboratory, Los Alamos, New Mexico, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Correlation of Th ii even-level isotope shifts to dominant configuration from Ref. 6. Open circles are level isotope shifts that could not be measured so well (? in Table 1). Individual points slightly displaced vertically when overlapping was appreciable.

Fig. 2
Fig. 2

Correlation of Th ii odd-level isotope shifts to dominant configuration from Ref. 6. Open circles are level isotope shifts that could not be measured so well (? in Table 2). Individual points slightly displaced vertically when overlapping was appreciable.

Fig. 3
Fig. 3

Correlation of Th ii level isotope shifts for the even f2s configuration with the percentage purity of the level from Ref. 12. Open circles are level isotope shifts that could not be measured so well (? in Table 1).

Fig. 4
Fig. 4

Correlation of Th ii level isotope shifts for the odd fds configuration with the percentage purity of the level from Ref. 12. Open circles are level isotope shifts that could not be measured so well (? in Table 2).

Fig. 5
Fig. 5

Correlation of Th ii level isotope shifts for the odd fd2 configuration with the percentage purity of the level from Ref. 12. Open circles are level isotope shifts that could not be measured so well (? in Table 2).

Tables (3)

Tables Icon

Table 1 Even-Level Isotope Shifts of Thiia

Tables Icon

Table 2 Odd-Level Isotope Shifts of Th iia

Tables Icon

Table 3 PCLIS’s (in mK)a

Metrics