Abstract

The spectral development of stimulated Raman scattering in single-mode silica fibers was studied both experimentally and by computer modeling. The most striking feature that emerges is the rapid growth of a weak feature at 490 cm−1 at the expense of a broad band at 440 cm−1 as pump power increases. These experimental results are in good agreement with our numerical simulations, although neither experiments nor calculations show the spectral broadening of higher Stokes orders commonly observed with high pump powers and at infrared wavelengths. It is shown that, in general, spectral broadening from four-wave mixing should be important in the development of the stimulated Raman spectrum. However, the present experiments fall into a regime of relatively low pump powers at visible wavelengths in which four-wave mixing is negligible and the stimulated spectrum depends only on the shape of the Raman gain curve.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, “Nonlinear properties of optical fibers”, in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 5; L. G. Cohen and Chinlon Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. QE-14, 855–859 (1978); V. S. Butylkin, V. V. Grigoryants, and V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141–146 (1979); G. Rosman, “High-order spectrum from stimulated Raman scattering in a silica-core fiber,” Opt. Quantum Electron 14, 92–93 (1982); Gao Pei-juan, Nie Cao-jiang, Yang Tian-long, and Su Hai-zheng, “Stimulated Raman scattering up to 10 orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981); F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers”, Appl. Opt. 22, 3854–3863 (1983).
    [CrossRef]
  2. Chinlon Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  3. E. P. Ippen, “Low power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
    [CrossRef]
  4. R. H. Stolen and Chinlon Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  5. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
    [CrossRef]
  6. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 112489–2494 (1972).
    [CrossRef] [PubMed]
  7. R. H. Stolen and G. E. Walrafen, “Water and its relation to broken bond defects in fused silica,” J. Chem. Phys. 64, 2623–2631 (1976).
    [CrossRef]
  8. R. H. Stolen and E. P. Ippen “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  9. R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
    [CrossRef]
  10. P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978); B. Crosignani, P. Di-Porto, and S. Solimeno, “Influence of guiding structures on spontaneous and stimulated emission: Raman scattering in optical fibers,” Phys. Rev. A 21, 594–598 (1980).
    [CrossRef]
  11. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157–1160 (1979).
    [CrossRef]
  12. J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. QE-14, 347–352 (1978).
    [CrossRef]
  13. J. Botineau and R. H. Stolen, “Effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. 72, 1592–1596 (1982).
    [CrossRef]
  14. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
    [CrossRef]
  15. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef] [PubMed]

1982 (2)

J. Botineau and R. H. Stolen, “Effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. 72, 1592–1596 (1982).
[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

1979 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157–1160 (1979).
[CrossRef]

1978 (4)

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. QE-14, 347–352 (1978).
[CrossRef]

R. H. Stolen and Chinlon Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978); B. Crosignani, P. Di-Porto, and S. Solimeno, “Influence of guiding structures on spontaneous and stimulated emission: Raman scattering in optical fibers,” Phys. Rev. A 21, 594–598 (1980).
[CrossRef]

1976 (2)

R. H. Stolen and G. E. Walrafen, “Water and its relation to broken bond defects in fused silica,” J. Chem. Phys. 64, 2623–2631 (1976).
[CrossRef]

Chinlon Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

1975 (1)

R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

1973 (1)

R. H. Stolen and E. P. Ippen “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

1972 (1)

1971 (1)

1970 (1)

E. P. Ippen, “Low power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

AuYeung, J.

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. QE-14, 347–352 (1978).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

Botineau, J.

Cherlow, J.

R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Gloge, D.

Hellwarth, R.

R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Ippen, E. P.

R. H. Stolen and E. P. Ippen “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

E. P. Ippen, “Low power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Lin, Chinlon

R. H. Stolen and Chinlon Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Chinlon Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

O’Connor, P.

Smith, R. G.

Stolen, R. H.

J. Botineau and R. H. Stolen, “Effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. 72, 1592–1596 (1982).
[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157–1160 (1979).
[CrossRef]

R. H. Stolen and Chinlon Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Chinlon Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

R. H. Stolen and G. E. Walrafen, “Water and its relation to broken bond defects in fused silica,” J. Chem. Phys. 64, 2623–2631 (1976).
[CrossRef]

R. H. Stolen and E. P. Ippen “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

R. H. Stolen, “Nonlinear properties of optical fibers”, in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 5; L. G. Cohen and Chinlon Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. QE-14, 855–859 (1978); V. S. Butylkin, V. V. Grigoryants, and V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141–146 (1979); G. Rosman, “High-order spectrum from stimulated Raman scattering in a silica-core fiber,” Opt. Quantum Electron 14, 92–93 (1982); Gao Pei-juan, Nie Cao-jiang, Yang Tian-long, and Su Hai-zheng, “Stimulated Raman scattering up to 10 orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981); F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers”, Appl. Opt. 22, 3854–3863 (1983).
[CrossRef]

Tauc, J.

Walrafen, G. E.

R. H. Stolen and G. E. Walrafen, “Water and its relation to broken bond defects in fused silica,” J. Chem. Phys. 64, 2623–2631 (1976).
[CrossRef]

Yang, T-T.

R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Yariv, A.

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. QE-14, 347–352 (1978).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. H. Stolen and E. P. Ippen “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Chinlon Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

E. P. Ippen, “Low power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157–1160 (1979).
[CrossRef]

J. AuYeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE J. Quantum Electron. QE-14, 347–352 (1978).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “Cw three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

J. Chem. Phys. (1)

R. H. Stolen and G. E. Walrafen, “Water and its relation to broken bond defects in fused silica,” J. Chem. Phys. 64, 2623–2631 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. A (1)

R. H. Stolen and Chinlon Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Phys. Rev. B (1)

R. Hellwarth, J. Cherlow, and T-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Other (1)

R. H. Stolen, “Nonlinear properties of optical fibers”, in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 5; L. G. Cohen and Chinlon Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. QE-14, 855–859 (1978); V. S. Butylkin, V. V. Grigoryants, and V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141–146 (1979); G. Rosman, “High-order spectrum from stimulated Raman scattering in a silica-core fiber,” Opt. Quantum Electron 14, 92–93 (1982); Gao Pei-juan, Nie Cao-jiang, Yang Tian-long, and Su Hai-zheng, “Stimulated Raman scattering up to 10 orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981); F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers”, Appl. Opt. 22, 3854–3863 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement for observing the development of the stimulated Raman spectrum. The output power of the mode-locked argon laser was measured with the laser’s internal power meter. A boxcar amplifier was used to isolate the center of the output pulse of the Q-switched Nd:YAG laser.

Fig. 2
Fig. 2

Dependence of the first Stokes spectrum on the power of the mode-locked argon laser. The peak power in the fiber is approximately 12 times the average laser power.

Fig. 3
Fig. 3

Intensities of the 440- and 490-cm−1 Raman peaks as a function of mode-locked argon laser power. Peak power in the fiber is about 12 times the average laser power.

Fig. 4
Fig. 4

First and second Stokes spectra pumped by the Q-switched Nd:YAG laser.

Fig. 5
Fig. 5

Raman gain curve of a silica-core single-mode fiber. This curve is normalized to 1.0 at 440 cm−1. The peak gain at 440 cm−1 for a pump wavelength of 532 nm is 1.86 × 10−11 cm/W and varies with pump wavelength as 1/λp.8

Fig. 6
Fig. 6

Calculated output power as a function of input cw pump power. The pump wavelength is 532 nm, the fiber length is 50 m, and the effective core area is 10−7 cm2.

Fig. 7
Fig. 7

Calculated first Stokes spectrum as a function of cw pump power. The pump and fiber parameters are the same as for Fig. 6.

Fig. 8
Fig. 8

Evolution of the stimulated Raman spectrum to the fifth Stokes order calculated for a Gaussian pump pulse depicted by the solid line in (b). The fiber length is 50 m, and the peak pump power is 100 W at 532 nm. The shaded areas for the various Stokes orders are the final computed pulse shapes at the fiber output.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d S i ( l ) = g ( Ω i ) P S i Δ l + 1 ( i - 1 ) j g ( Ω i - Ω j ) S j S i Δ l - ( i + 1 ) N k g ( Ω k - Ω i ) S k S i Δ l ,
d S i ( spont ) = 1.5 × 10 - 27 λ 4 P G ( Ω i ) f π ( N . A . ) 2 Δ ν ¯ Δ l ,
R = 1.5 × 10 - 27 λ 4 π 2 ( N . A . ) 2 Δ ν ¯ A G m .
γ 3 / 2 e - γ = π 2 h ν s G 0 Δ ν 1 / 2 A L eff , γ = G 0 P c ( 0 ) A L eff ,
l coh = [ λ D ( λ ) Ω 2 ] - 1 .

Metrics