Abstract

The Cotton–Mouton constants of argon, krypton, and xenon have been measured relative to nitrogen at room temperature and ambient pressure for λ = 514.5 nm. Upper limits for helium and neon have been determined. The sensitivity of the apparatus was Δnmin = 0.8 × 10−14 for a measuring time of 1 sec.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. L. Manakov and V. D. Ovsyannikov, “Changes in the polarization properties of an electromagnetic wave caused by atoms in external fields,” Sov. J. Quantum Electron. 5, 1055–1059 (1975), It turns out that the theoretical results are a factor of 3 smaller than the values that we have found. We think that this discrepancy could be explained by the fact that the authors use the pseudo-potential method to derive the Cotton–Mouton constants of noble gases.
    [Crossref]
  2. A. Cotton and T. Belling, “Birefringence magnetique de l’oxygene et de l’azote a l’etat gazeux et des solutions acqueuses des clorates,” C. R. Acad. Sci. 198, 1889–1893 (1934).
  3. A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
    [Crossref]
  4. S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
    [Crossref]
  5. E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. 85B, 151–155 (1979); E. Iacopini, B. Smith, G. Stefanini, and E. Zavattini, “On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field,” Nuovo Cimento 61B, 21–37 (1981).
  6. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 13.
  7. S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
    [Crossref]
  8. J. H. Cole, “Low-frequency laser noise of several commercial lasers,” Appl. Opt. 19, 1023–1025 (1980).
    [Crossref] [PubMed]

1983 (1)

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

1982 (1)

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

1980 (1)

1979 (1)

E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. 85B, 151–155 (1979); E. Iacopini, B. Smith, G. Stefanini, and E. Zavattini, “On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field,” Nuovo Cimento 61B, 21–37 (1981).

1975 (1)

N. L. Manakov and V. D. Ovsyannikov, “Changes in the polarization properties of an electromagnetic wave caused by atoms in external fields,” Sov. J. Quantum Electron. 5, 1055–1059 (1975), It turns out that the theoretical results are a factor of 3 smaller than the values that we have found. We think that this discrepancy could be explained by the fact that the authors use the pseudo-potential method to derive the Cotton–Mouton constants of noble gases.
[Crossref]

1967 (1)

A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
[Crossref]

1934 (1)

A. Cotton and T. Belling, “Birefringence magnetique de l’oxygene et de l’azote a l’etat gazeux et des solutions acqueuses des clorates,” C. R. Acad. Sci. 198, 1889–1893 (1934).

Belling, T.

A. Cotton and T. Belling, “Birefringence magnetique de l’oxygene et de l’azote a l’etat gazeux et des solutions acqueuses des clorates,” C. R. Acad. Sci. 198, 1889–1893 (1934).

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 13.

Buckingham, A. D.

A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
[Crossref]

Carusotto, S.

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

Cole, J. H.

Cotton, A.

A. Cotton and T. Belling, “Birefringence magnetique de l’oxygene et de l’azote a l’etat gazeux et des solutions acqueuses des clorates,” C. R. Acad. Sci. 198, 1889–1893 (1934).

Iacopini, E.

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. 85B, 151–155 (1979); E. Iacopini, B. Smith, G. Stefanini, and E. Zavattini, “On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field,” Nuovo Cimento 61B, 21–37 (1981).

Manakov, N. L.

N. L. Manakov and V. D. Ovsyannikov, “Changes in the polarization properties of an electromagnetic wave caused by atoms in external fields,” Sov. J. Quantum Electron. 5, 1055–1059 (1975), It turns out that the theoretical results are a factor of 3 smaller than the values that we have found. We think that this discrepancy could be explained by the fact that the authors use the pseudo-potential method to derive the Cotton–Mouton constants of noble gases.
[Crossref]

Ovsyannikov, V. D.

N. L. Manakov and V. D. Ovsyannikov, “Changes in the polarization properties of an electromagnetic wave caused by atoms in external fields,” Sov. J. Quantum Electron. 5, 1055–1059 (1975), It turns out that the theoretical results are a factor of 3 smaller than the values that we have found. We think that this discrepancy could be explained by the fact that the authors use the pseudo-potential method to derive the Cotton–Mouton constants of noble gases.
[Crossref]

Polacco, E.

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

Prichard, W. H.

A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
[Crossref]

Smith, B.

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

Stefanini, G.

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

Whiffen, D. H.

A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 13.

Zavattini, E.

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. 85B, 151–155 (1979); E. Iacopini, B. Smith, G. Stefanini, and E. Zavattini, “On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field,” Nuovo Cimento 61B, 21–37 (1981).

Appl. Opt. (1)

C. R. Acad. Sci. (1)

A. Cotton and T. Belling, “Birefringence magnetique de l’oxygene et de l’azote a l’etat gazeux et des solutions acqueuses des clorates,” C. R. Acad. Sci. 198, 1889–1893 (1934).

J. Phys. E (1)

S. Carusotto, E. Iacopini, B. Smith, and G. Stefanini, “Digital techniques applied to phase-sensitive detection,” J. Phys. E 16, 844–847 (1983).
[Crossref]

Opt. Commun. (1)

S. Carusotto, E. Iacopini, E. Polacco, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
[Crossref]

Phys. Lett. (1)

E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. 85B, 151–155 (1979); E. Iacopini, B. Smith, G. Stefanini, and E. Zavattini, “On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field,” Nuovo Cimento 61B, 21–37 (1981).

Sov. J. Quantum Electron. (1)

N. L. Manakov and V. D. Ovsyannikov, “Changes in the polarization properties of an electromagnetic wave caused by atoms in external fields,” Sov. J. Quantum Electron. 5, 1055–1059 (1975), It turns out that the theoretical results are a factor of 3 smaller than the values that we have found. We think that this discrepancy could be explained by the fact that the authors use the pseudo-potential method to derive the Cotton–Mouton constants of noble gases.
[Crossref]

Trans. Faraday Soc. (1)

A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus: optical layout. A, analyzer prism; C, compensator; FCA1 and FCA2, air Faraday cells; FCG, glass Faraday modulator; MG, gold mirror; M3, aluminium mirror; P, polarizer prism; D, photodiode; SC, synchronizing coil; TL, telescope; W, window; M, manometer; MD, rotating dipole magnet; PC, pickup coil.

Fig. 2
Fig. 2

Experimental apparatus: electronic layout.

Fig. 3
Fig. 3

Fourier spectrum of the laser-intensity fluctuations at 2.5 nA of D current (feedback resistor R = 400 MΩ). The dashed line represents the statistical limit. The peaks in Fig. 3(b) correspond to harmonics of the 50-Hz mains.

Fig. 4
Fig. 4

Fourier spectrum of the lock-in output. The upper curve is taken with the Faraday modulation on, whereas the lower curve is taken without Faraday modulation. The magnetic field B is off. The peak at fa1 corresponds to the signal produced by the reference cell FCA1 (Φa1 = 0.82 × 10−6 rad). The cutoff near 0 Hz is due to the ac coupling to the spectrum analyzer.

Fig. 5
Fig. 5

Fourier amplitude spectrum of the DPSD output taken in nitrogen at 3040 G of magnetic-field intensity, with a measuring time of 1000 sec.

Tables (2)

Tables Icon

Table 1 Spectral Components of the DPSD Output

Tables Icon

Table 2 Experimental Results

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

CM = Δ n / ( λ B 2 ) ,
Ψ sens = 3.6 × 10 - 8 / Hz .
Δ n min = Ψ sens λ / π L = 0.8 × 10 - 14 / Hz ,
CM ( N 2 ) = - 5.10 × 10 - 17 G - 2 cm - 1 .
ψ = π CM sin ( 2 θ ) d x ( B × n ^ ) 2 ,
ϕ = V d x ( B · n ^ ) ,
I = I 0 ( ψ 2 + ϕ 2 ) ,
ϕ = a ψ + b ϕ , ψ = a ϕ - b ψ ,
a = 1.30 ± 0.05 ,             b < 0.005 ,
W ( t ) = W 0 { σ 2 + [ ϕ g ( t ) + ϕ a 1 ( t ) + b ϕ a 2 ( t ) + a ψ e ( t ) + b ϕ e ( t ) + χ ( t ) ] 2 + [ a ϕ e ( t ) + ρ ( t ) ] 2 } ,
ψ e = Ψ e sin [ 2 θ ( t ) ] θ ( t ) = 2 π f m t , Ψ e = π CM d x B 2 , f m = 0.900 Hz
ϕ g = Φ g sin ( 2 π f g t + ζ g ) , Φ g = 3.5 × 10 - 4 rad ,             f g = 312.500 Hz ;
ϕ a 1 = Φ a 1 sin ( 2 π f a 1 t + ζ a 1 ) Φ a 1 = 0.82 × 10 - 6 rad ,             f a 1 = 1.710 Hz ;
ϕ a 2 = Φ a 2 sin ( 2 π f a 2 + ζ a 2 ) , Φ a 2 = 0.82 × 10 - 6 rad ,             f a 2 = 1.900 Hz ;
V ( t ) = η W ( t ) R = η W 0 R [ σ 2 + ( Φ g 2 / 2 ) - ( Φ g 2 / 2 ) cos ( 4 π f g t + 2 ζ g ) + 2 Φ g χ ( t ) sin ( 2 π f g t + ζ g ) + 2 Φ g Φ a 1 sin ( 2 π f g t + ζ g ) sin ( 2 π f a 1 t + ζ a 1 ) + 2 a Φ g Ψ e sin ( 2 π f g t + ζ g ) sin ( 4 π f m t ) + 2 b Φ g Φ a 2 sin ( 2 π f g t + ζ g ) sin ( 2 π f a 2 t + ζ a 2 ) + 2 b Φ g Φ e sin ( 2 π f g t + ζ g ) sin ( 4 π f m t ) ] ,
i shot = [ 2 e η W 0 ( σ 2 + Φ g 2 / 2 ) Δ ν ] 1 / 2 2.8 × 10 - 14 Δ ν A .
i thermal = [ ( 4 k T / R ) Δ ν ] 0.6 × 10 - 14 Δ ν A .
i electr 1. × 10 - 14 Δ ν A .
i laser 10 - 5 i dc Δ ν .
i laser 2.5 × 10 - 14 Δ ν A .
V n 16 × 10 - 16 V / Hz .
A s ( f ) = 2 N n = 1 N d n sin ( 2 π f n τ ) ,
A c ( f ) = 2 N n = 1 N d n cos ( 2 π f n τ )
A ( f ) = [ A s 2 ( f ) + A c 2 ( f ) ] 1 / 2 ,
a Ψ e / Φ a 1 = A s ( 2 f m ) / A ( f a 1 ) .
CM = A s ( 2 f m ) A ( f a 1 ) A ( f a 1 ) A s ( 2 f m ) CM ( N 2 ) ,
A s ( 2 f m ) 0.2.
CM ( He ) < 6 × 10 - 19 G - 2 cm - 1 ,
CM ( Ne ) < 6 × 10 - 19 G - 2 cm - 1 ,

Metrics