Abstract

A theory of generation–recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photo-conductor (such as the presence of compensating impurities) and to the detector’s operating conditions, such as its temperature and the presence of background radiation. The detector’s performance is shown to degrade at high background levels because of saturation effects.

© 1984 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noise Limitations in Solid State Photodetectors

K. M. van Vliet
Appl. Opt. 6(7) 1145-1169 (1967)

Germanium:gallium photoconductors for far infrared heterodyne detection

I. S. Park, E. E. Haller, E. N. Grossman, and Dan M. Watson
Appl. Opt. 27(19) 4143-4150 (1988)

The Detectivity of Infrared Photodetectors

S. Nudelman
Appl. Opt. 1(5) 627-636 (1962)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription