Abstract

Three-step laser excitation was used to populate and observe members of Rydberg series in neutral iron with high effective quantum numbers. These series converge to the ground and to the first excited state of singly ionized iron. The photoionization threshold was also observed. Analyses of the Rydberg series yield the value 63 737(1) cm−1 or 7.9024(1) eV as the ionization potential of neutral iron.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Corliss and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Data 11, 135–242 (1982); ionization potential from M. A. Catalan and R. Velasco, An. Real Soc. Espan. Fis. Quim. (Madrid) 48A, 247–266 (1952).
    [CrossRef]
  2. C. E. Moore, Atomic Energy Levels, NSRDS-NBS 35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 49–54; ionization potential from H. N. Russell, C. E. Moore, and D. W. Weeks, Trans. Am. Phil. Soc. 34, Part 2, 111–207 (1944).
  3. L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
    [CrossRef]
  4. R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).
  5. E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Conway, "First ionization potentials of lanthanides by laser spectroscopy," J. Opt. Soc. Am. 68, 52–61 (1978).
    [CrossRef]
  6. E. F. Worden and J. G. Conway, Multistep Laser Photoionization of the Lanthanides and Actinides, ACS Symposium Series No. 131, Lanthanide and Actinide Chemistry and Spectroscopy (American Chemical Society, Washington, D.C., 1980), pp. 381–425.
  7. W. R. S. Garton and M. Wilson, "Autoionization-broadened Rydberg Series in the Spectrum of La I," Astrophys. J. 145, 333–336 (1966).
    [CrossRef]
  8. C. M. Brown, Naval Research Laboratory, Washington, D.C. (personal communication, September 1983).

1983 (1)

C. M. Brown, Naval Research Laboratory, Washington, D.C. (personal communication, September 1983).

1982 (1)

C. Corliss and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Data 11, 135–242 (1982); ionization potential from M. A. Catalan and R. Velasco, An. Real Soc. Espan. Fis. Quim. (Madrid) 48A, 247–266 (1952).
[CrossRef]

1978 (1)

1976 (2)

L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
[CrossRef]

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

1966 (1)

W. R. S. Garton and M. Wilson, "Autoionization-broadened Rydberg Series in the Spectrum of La I," Astrophys. J. 145, 333–336 (1966).
[CrossRef]

Brown, C. M.

C. M. Brown, Naval Research Laboratory, Washington, D.C. (personal communication, September 1983).

Carlson, L. R.

L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
[CrossRef]

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

Conway, J. G.

E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Conway, "First ionization potentials of lanthanides by laser spectroscopy," J. Opt. Soc. Am. 68, 52–61 (1978).
[CrossRef]

E. F. Worden and J. G. Conway, Multistep Laser Photoionization of the Lanthanides and Actinides, ACS Symposium Series No. 131, Lanthanide and Actinide Chemistry and Spectroscopy (American Chemical Society, Washington, D.C., 1980), pp. 381–425.

Corliss, C.

C. Corliss and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Data 11, 135–242 (1982); ionization potential from M. A. Catalan and R. Velasco, An. Real Soc. Espan. Fis. Quim. (Madrid) 48A, 247–266 (1952).
[CrossRef]

Garton, W. R. S.

W. R. S. Garton and M. Wilson, "Autoionization-broadened Rydberg Series in the Spectrum of La I," Astrophys. J. 145, 333–336 (1966).
[CrossRef]

Johnson, S. A.

L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
[CrossRef]

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

May, C. A.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
[CrossRef]

Moore, C. E.

C. E. Moore, Atomic Energy Levels, NSRDS-NBS 35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 49–54; ionization potential from H. N. Russell, C. E. Moore, and D. W. Weeks, Trans. Am. Phil. Soc. 34, Part 2, 111–207 (1944).

Paisner, J. A.

Radziemski, L. J.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

Solarz, R. W.

Sugar, J.

C. Corliss and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Data 11, 135–242 (1982); ionization potential from M. A. Catalan and R. Velasco, An. Real Soc. Espan. Fis. Quim. (Madrid) 48A, 247–266 (1952).
[CrossRef]

Wilson, M.

W. R. S. Garton and M. Wilson, "Autoionization-broadened Rydberg Series in the Spectrum of La I," Astrophys. J. 145, 333–336 (1966).
[CrossRef]

Worden, E. F.

E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Conway, "First ionization potentials of lanthanides by laser spectroscopy," J. Opt. Soc. Am. 68, 52–61 (1978).
[CrossRef]

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, "Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of 238U using multistep laser photoionization," J. Opt. Soc. Am. 66, 846–853 (1976).
[CrossRef]

E. F. Worden and J. G. Conway, Multistep Laser Photoionization of the Lanthanides and Actinides, ACS Symposium Series No. 131, Lanthanide and Actinide Chemistry and Spectroscopy (American Chemical Society, Washington, D.C., 1980), pp. 381–425.

Astrophys. J. (1)

W. R. S. Garton and M. Wilson, "Autoionization-broadened Rydberg Series in the Spectrum of La I," Astrophys. J. 145, 333–336 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Data (1)

C. Corliss and J. Sugar, "Energy Levels of Iron, Fe I through Fe XXVI," J. Phys. Chem. Data 11, 135–242 (1982); ionization potential from M. A. Catalan and R. Velasco, An. Real Soc. Espan. Fis. Quim. (Madrid) 48A, 247–266 (1952).
[CrossRef]

Phys. Rev. (1)

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, Jr., "Detection of Rydberg states in uranium using time-resolved stepwise laser photoionization," Phys. Rev. A14, 1129–1136 (1976).

Other (3)

C. E. Moore, Atomic Energy Levels, NSRDS-NBS 35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 49–54; ionization potential from H. N. Russell, C. E. Moore, and D. W. Weeks, Trans. Am. Phil. Soc. 34, Part 2, 111–207 (1944).

E. F. Worden and J. G. Conway, Multistep Laser Photoionization of the Lanthanides and Actinides, ACS Symposium Series No. 131, Lanthanide and Actinide Chemistry and Spectroscopy (American Chemical Society, Washington, D.C., 1980), pp. 381–425.

C. M. Brown, Naval Research Laboratory, Washington, D.C. (personal communication, September 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Excitation schemes used to obtain Rydberg series and the photoionization threshold of iron with pulsed dye lasers. Delay times of 5 to 20 nsec were used between laser pulses of λ1 and λ2 and between λ2 and λ3.

Fig. 2
Fig. 2

Autoionizing Rydberg series of iron from the 45 061.327-cm−1 3d64s5s5D3 level that converges to the 384.77-cm−1 3d64s6D7/2 level of the ion. The excitation sequence is shown in the figure. The dots and effective quantum numbers 16.87, 17.87, and 18.88 identify members of a series converging to the 667.64-cm−1 level of the ion.

Fig. 3
Fig. 3

Photoionization threshold of iron and Rydberg series converging to the ground state of the ion obtained from the 44677.004 cm−1 3d64s5s5D4 level of neutral ion. The excitation sequence is shown in the figure. Three members of a series converging to the 384.77-cm−1 level of the ion are also present in the scan. They are identified by a dot and the effective quantum number above each peak.

Fig. 4
Fig. 4

Variation of quantum defect (nn*) versus n with change in assumed limit for an iron Rydberg series converging to the 384.77-cm−1 3d64s6D7/2 level of the ion. The assumed limit, 64 122 cm−1, gives the curve showing the most constant quantum defect and is selected as the series limit. By subtracting 384.77 cm−1 from this limit, we obtain 63 737 cm−1 as the ionization potential of neutral iron.

Tables (2)

Tables Icon

Table 1 Low Iron Levels of Neutral Iron That Are Thermally Populated in Vapor Sources and Low Levels of Singly Ionized Iron That Can Be Limits of Rydberg Seriesa

Tables Icon

Table 2 Ionization Potential of Neutral Iron

Metrics