Abstract

The furnace absorption method has been applied to the spectrum of neutral atomic uranium. In the wavelength interval 335 < λ (nm) < 361, the oscillator strengths for 497 transitions in neutral uranium have been determined. For the strongest transition at 358.48773 nm, the result was f = 0.043 ± 0.005, where the stated uncertainty represents one root-mean-square variance. The latter result may be compared with the absolute oscillator strength, f = 0.041 ± 0.003, derived from opacity measurements in the uranium nitride system. The excellent agreement between these two determinations permits the establishing of a single absolute scale for oscillator strengths in neutral atomic uranium.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Bieniewski, "Absolute oscillator strengths for neutral uranium," J. Opt. Soc. Am. 68, 1173–1181 (1978).
    [CrossRef]
  2. R. J. Ackermann and E. G. Rauh, "Measurements of the solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium," High Temp. Sci. 4, 496–505 (1972).
  3. F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

1978 (1)

1976 (1)

F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

1972 (1)

R. J. Ackermann and E. G. Rauh, "Measurements of the solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium," High Temp. Sci. 4, 496–505 (1972).

Ackermann, R. J.

F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

R. J. Ackermann and E. G. Rauh, "Measurements of the solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium," High Temp. Sci. 4, 496–505 (1972).

Bieniewski, T. M.

Oetting, F. L.

F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

Rand, M. H.

F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

Rauh, E. G.

R. J. Ackermann and E. G. Rauh, "Measurements of the solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium," High Temp. Sci. 4, 496–505 (1972).

High Temp. Sci. (1)

R. J. Ackermann and E. G. Rauh, "Measurements of the solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium," High Temp. Sci. 4, 496–505 (1972).

J. Opt. Soc. Am. (1)

Other (1)

F. L. Oetting, M. H. Rand, and R. J. Ackermann, "The chemical thermodynamics of actinide elements and compounds," in The Actinide Elements: Part I (International Atomic Energy Agency, Vienna, Austria, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Tungsten absorption cell: ➀ cell aperture, ➁ tungsten cell, ➂ sintered mass of tungsten granules containing liquid uranium, ➃ heat shields, ➄ water-cooled radio-frequency concentrator wall.

Fig. 2
Fig. 2

Optical system used in absorption experiments.

Fig. 3
Fig. 3

Least-squares plot of the optical opacity of the uranium transition at 358.48773 nm. The slope of this curve yields the enthalpy of formation for gaseous uranium, ΔH298° = 126.7 kcal/mole.

Tables (5)

Tables Icon

Table 1 Absolute f Value for the Transition at 358.48773 nma

Tables Icon

Table 2 Absolute Oscillator Strengths for Neutral Uranium

Tables Icon

Table 3 Absolute Oscillator Strengths for Neutral Uranium

Tables Icon

Table 4 Absolute Oscillator Strengths for Neutral Uranium

Tables Icon

Table 5 Absolute Oscillator Strengths for Neutral Uranium

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

0 ln ( I 0 I λ ) d λ = π r 0 2 N f l ,
Δ H 298 º = 126.7 kcal .
f ( 358.4 ) = 0.043 ± 0.005 ,

Metrics