Abstract

By making use of the fact that photons are created in pairs in the process of parametric downconversion and by detecting them in coincidence, we propose a scheme for communication by light that should make it possible to achieve high discrimination against background. Weak light beams that are greatly overshadowed by background light should therefore be usable for an optical channel.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960).
  2. B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967); “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
    [Crossref]
  3. M. T. Raiford, “Statistical dynamics of quantum oscillators and parametric amplification in a single mode,” Phys. Rev. A 2, 1541–1558 (1970); “Degenerate parametric amplification with time-dependent pump amplitude and phase,” Phys. Rev. A 9, 2060–2069 (1974).
    [Crossref]
  4. B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
    [Crossref]
  5. D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
    [Crossref]
  6. A. Yariv, Quantum Electronics, (2nd ed. Wiley, New York, 1974), Chap. 17.
  7. P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
    [Crossref]
  8. R. Neumann and H. Haug, “Calculation of the photon-anticor-relation effect in a degenerate optical parametric amplifier,” Opt. Commun. 31, 267–269 (1979).
    [Crossref]
  9. G. Milburn and D. F. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981); “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27, 392–394 (1983).
    [Crossref]
  10. K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A 27, 2003–2007 (1983).
    [Crossref]
  11. S. Friberg and L. Mandel, “Production of squeezed states by combination of parametric down-conversion and harmonic generation,” Opt. Commun. (to be published).
  12. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part I: quantum-state propagation and quantum-noise reduction,” IEEE Trans. Inf. Theory IT24, 657–668 (1978); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part III: quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory IT26, 78–92 (1980).
    [Crossref]
  13. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [Crossref]
  14. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
    [Crossref]

1983 (1)

K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A 27, 2003–2007 (1983).
[Crossref]

1981 (1)

G. Milburn and D. F. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981); “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27, 392–394 (1983).
[Crossref]

1979 (2)

P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
[Crossref]

R. Neumann and H. Haug, “Calculation of the photon-anticor-relation effect in a degenerate optical parametric amplifier,” Opt. Commun. 31, 267–269 (1979).
[Crossref]

1976 (1)

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part I: quantum-state propagation and quantum-noise reduction,” IEEE Trans. Inf. Theory IT24, 657–668 (1978); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part III: quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory IT26, 78–92 (1980).
[Crossref]

1974 (1)

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

1973 (1)

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[Crossref]

1970 (2)

M. T. Raiford, “Statistical dynamics of quantum oscillators and parametric amplification in a single mode,” Phys. Rev. A 2, 1541–1558 (1970); “Degenerate parametric amplification with time-dependent pump amplitude and phase,” Phys. Rev. A 9, 2060–2069 (1974).
[Crossref]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

1967 (1)

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967); “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

1965 (1)

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Drummond, P.

P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Friberg, S.

S. Friberg and L. Mandel, “Production of squeezed states by combination of parametric down-conversion and harmonic generation,” Opt. Commun. (to be published).

Glauber, R. J.

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967); “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

Haug, H.

R. Neumann and H. Haug, “Calculation of the photon-anticor-relation effect in a degenerate optical parametric amplifier,” Opt. Commun. 31, 267–269 (1979).
[Crossref]

Louisell, W. H.

W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960).

Mandel, L.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

S. Friberg and L. Mandel, “Production of squeezed states by combination of parametric down-conversion and harmonic generation,” Opt. Commun. (to be published).

McNeil, K. J.

P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Milburn, G.

G. Milburn and D. F. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981); “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27, 392–394 (1983).
[Crossref]

Mollow, B. R.

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967); “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

Neumann, R.

R. Neumann and H. Haug, “Calculation of the photon-anticor-relation effect in a degenerate optical parametric amplifier,” Opt. Commun. 31, 267–269 (1979).
[Crossref]

Raiford, M. T.

M. T. Raiford, “Statistical dynamics of quantum oscillators and parametric amplification in a single mode,” Phys. Rev. A 2, 1541–1558 (1970); “Degenerate parametric amplification with time-dependent pump amplitude and phase,” Phys. Rev. A 9, 2060–2069 (1974).
[Crossref]

Stoler, D.

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

Walls, D. F.

G. Milburn and D. F. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981); “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27, 392–394 (1983).
[Crossref]

P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Wódkiewicz, K.

K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A 27, 2003–2007 (1983).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, (2nd ed. Wiley, New York, 1974), Chap. 17.

Yuen, H. P.

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part I: quantum-state propagation and quantum-noise reduction,” IEEE Trans. Inf. Theory IT24, 657–668 (1978); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part III: quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory IT26, 78–92 (1980).
[Crossref]

Zubairy, M. S.

K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A 27, 2003–2007 (1983).
[Crossref]

Opt. Commun. (3)

P. Drummond, K. J. McNeil, and D. F. Walls, “Bistability and photon antibunching in sub/second harmonic generation,” Opt. Commun. 28, 255–258 (1979); “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981).
[Crossref]

R. Neumann and H. Haug, “Calculation of the photon-anticor-relation effect in a degenerate optical parametric amplifier,” Opt. Commun. 31, 267–269 (1979).
[Crossref]

G. Milburn and D. F. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981); “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27, 392–394 (1983).
[Crossref]

Phys. Rev. (1)

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967); “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

Phys. Rev. A (4)

M. T. Raiford, “Statistical dynamics of quantum oscillators and parametric amplification in a single mode,” Phys. Rev. A 2, 1541–1558 (1970); “Degenerate parametric amplification with time-dependent pump amplitude and phase,” Phys. Rev. A 9, 2060–2069 (1974).
[Crossref]

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[Crossref]

K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A 27, 2003–2007 (1983).
[Crossref]

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part I: quantum-state propagation and quantum-noise reduction,” IEEE Trans. Inf. Theory IT24, 657–668 (1978); H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states—Part III: quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory IT26, 78–92 (1980).
[Crossref]

Phys. Rev. Lett. (2)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

Rev. Mod. Phys. (1)

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Other (3)

W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960).

A. Yariv, Quantum Electronics, (2nd ed. Wiley, New York, 1974), Chap. 17.

S. Friberg and L. Mandel, “Production of squeezed states by combination of parametric down-conversion and harmonic generation,” Opt. Commun. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Outline of the proposed communication channel.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = ω 1 + ω 2 , k 0 = k 1 + k 2 .
n 1 = α 1 ( i 1 + β 1 I ) T , n 2 = α 2 ( i 2 + β 2 I ) T
n 1 = α 1 i 1 T , n 2 = α 2 i 2 T
N ( 1 ) = α 1 α 2 T [ β 1 β 2 I + ( i 1 i 2 + β 1 i 2 I + β 2 i 1 I ) T R ] ,
N ( 0 ) = α 1 α 2 T [ i 1 i 2 T R ] .
β 1 β 2 I i 1 i 2 T R .
β 1 I 5 × 10 4 photons sec - 1 β 2 I ,
i 1 10 6 photons sec - 1 i 2
T R = 1 nsec , T = 20 msec ,
α 1 0.1 α 2 .
n s = 2100 ( s = 1 , 2 ) when a 1 is transmitted , n s = 2000 ( s = 1 , 2 ) when a 0 is transmitted .
N ( 1 ) 5 , N ( 0 ) 0.2 ,
P ( 1 0 ) = r = 2 N ( 0 ) r r ! exp [ - N ( 0 ) ] 0.017 ,
P ( 0 1 ) = r = 0 1 N ( 1 ) r r ! exp [ - N ( 1 ) ] 0.04.

Metrics