Abstract

Unavoidable structural disorder in photonic crystals causes multiple scattering of light, resulting in extinction of coherent beams and generation of diffuse light. We demonstrate experimentally that the diffusely transmitted intensity is distributed over exit angles in a strikingly non-Lambertian manner, depending strongly on frequency. The angular redistribution of diffuse light reveals both photonic gaps and the diffuse extrapolation length, as confirmed by a quantitative diffusion theory that includes photonic band structures. Total transmission corrected for internal reflection shows that extinction increases slower with frequency than Rayleigh’s law predicts. Hence disorder affects the high-frequency photonic bandgap of fcc crystals less severely than expected previously.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription