Abstract

We measure second-order nonlinear coefficients using optical parametric amplification and second-harmonic generation over a range of wavelengths for the crystals KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5. Combining our new measurements with previously reported values, we compare the wavelength variation of individual dijks with Miller scaling, and we conclude that Miller scaling is a useful approximation for these crystals.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  2. B. Boulanger, J. P. Feve, G. Marnier, and B. Menaert, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
    [CrossRef]
  3. B. Boulanger, J. P. Feve, G. Marnier, B. Menaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994).
    [CrossRef]
  4. B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
    [CrossRef]
  5. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
    [CrossRef]
  6. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  8. C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
    [CrossRef]
  9. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  10. D. J. Armstrong, W. J. Alford, T. D. Raymond, and A. V. Smith, “Absolute measurement of the effective nonlinearities of KTP and BBO crystals by parametric amplification,” Appl. Opt. 35, 2032–2040 (1996).
    [CrossRef] [PubMed]
  11. Function 2D-mix-LP within SNLO. The SNLO nonlinear optics code is available from A. V. Smith.
  12. H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988).
    [CrossRef] [PubMed]
  13. T. D. Raymond, W. J. Alford, M. H. Crawford, and A. A. Allerman, “Intracavity frequency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser,” Opt. Lett. 24, 1127–1129 (1999).
    [CrossRef]
  14. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  15. R. J. Gehr and A. V. Smith, “Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals,” J. Opt. Soc. Am. B 15, 2298–2307 (1998).
    [CrossRef]
  16. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  17. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1906 (1976).
    [CrossRef]
  18. A. Anema and T. Rasing, “Relative signs of the nonlinear coefficients of potassium titanyl phosphate,” Appl. Opt. 36, 5902–5904 (1997).
    [CrossRef]
  19. E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, “Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence,” Opt. Lett. 19, 168–170 (1994).
    [CrossRef] [PubMed]
  20. T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
    [CrossRef]
  21. H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [CrossRef] [PubMed]
  22. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
    [CrossRef]
  23. K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30, 881–883 (1994).
    [CrossRef]
  24. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
    [CrossRef]
  25. J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
    [CrossRef]
  26. R. Urschel, A. Fix, R. Wallenstein, D. Rytz, and B. Zysset, “Generation of tunable narrow-band midinfrared radiation in a type I potassium niobate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 726–730 (1995).
    [CrossRef]
  27. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  28. G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
    [CrossRef]
  29. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999).
    [CrossRef]
  30. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [CrossRef]
  31. S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
    [CrossRef]
  32. S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
    [CrossRef]

1999

1998

R. J. Gehr and A. V. Smith, “Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals,” J. Opt. Soc. Am. B 15, 2298–2307 (1998).
[CrossRef]

B. Boulanger, J. P. Feve, G. Marnier, and B. Menaert, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

1997

1996

1995

R. Urschel, A. Fix, R. Wallenstein, D. Rytz, and B. Zysset, “Generation of tunable narrow-band midinfrared radiation in a type I potassium niobate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 726–730 (1995).
[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

1994

1992

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[CrossRef] [PubMed]

1991

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

1990

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

1988

1987

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

1984

J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
[CrossRef]

1976

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1906 (1976).
[CrossRef]

1974

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1966

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

1964

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Abed, M.

Alford, W. J.

Allerman, A. A.

Anema, A.

Armstrong, D. J.

Baumert, J.-C.

J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Bierlein, J. D.

Bonnin, C.

Borsa, G.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Boulanger, B.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1906 (1976).
[CrossRef]

Cabirol, X.

Castelletto, S.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Chen, C.

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Cheng, L. K.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Cheng, L. T.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Cheung, E. C.

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1906 (1976).
[CrossRef]

Clairon, A.

Crawford, M. H.

Davis, L.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Feve, J. P.

Fix, A.

Galperin, J.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

Gehr, R. J.

Godone, A.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Gunter, P.

J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Hoffnagle, J.

J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Hotsenpiller, P. A. M.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Huang, C.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Ito, R.

Kato, K.

K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30, 881–883 (1994).
[CrossRef]

Kitamoto, A.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Koch, K.

Kondo, T.

Kubota, S.

Lin, S.

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Liu, J. M.

Marnier, G.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Menaert, B.

B. Boulanger, J. P. Feve, G. Marnier, and B. Menaert, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

B. Boulanger, J. P. Feve, G. Marnier, B. Menaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Moore, G. T.

Nakamura, H.

Nishikawa, T.

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

Novero, C.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Ohdaira, K.

Okamoto, T.

Rasing, T.

Rastello, M. L.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Raymond, T. D.

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Robinson, F. N. H.

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

Rytz, D.

Shirane, M.

Shoji, I.

Smith, A. V.

Sun, Z.

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Tatsuki, K.

Uematsu, Y.

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

Uesugi, N.

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

Urschel, R.

Vanherzeele, H.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Villeval, P.

Wallenstein, R.

Webb, M.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Wu, B.

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Zondy, J. J.

Zondy, J.-J.

Zumsteg, F. C.

Zysset, B.

Appl. Opt.

Appl. Phys. Lett.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

IEEE J. Quantum Electron.

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

K. Kato, “Second-harmonic and sum-frequency generation in KTiOAsO4,” IEEE J. Quantum Electron. 30, 881–883 (1994).
[CrossRef]

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

J. Appl. Phys.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

S. Lin, Z. Sun, B. Wu, and C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Cryst. Growth

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

J. Opt. Soc. Am. B

B. Boulanger, J. P. Feve, G. Marnier, B. Menaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
[CrossRef]

R. Urschel, A. Fix, R. Wallenstein, D. Rytz, and B. Zysset, “Generation of tunable narrow-band midinfrared radiation in a type I potassium niobate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 726–730 (1995).
[CrossRef]

B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

R. J. Gehr and A. V. Smith, “Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals,” J. Opt. Soc. Am. B 15, 2298–2307 (1998).
[CrossRef]

I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

Opt. Lett.

Opt. Rev.

G. Borsa, S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Measurement of second-order optical nonlinear coefficient from the absolute radiant power of parametric fluorescence in LiIO3,” Opt. Rev. 4, 484–489 (1997).
[CrossRef]

Phys. Rev. B

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1906 (1976).
[CrossRef]

Proc. SPIE

J.-C. Baumert, J. Hoffnagle, and P. Gunter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Pure Appl. Opt.

B. Boulanger, J. P. Feve, G. Marnier, and B. Menaert, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Function 2D-mix-LP within SNLO. The SNLO nonlinear optics code is available from A. V. Smith.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of the parametric-gain experimental apparatus.

Fig. 2
Fig. 2

Example of measured time profiles for (a) the 1064-nm and (b) the 532-nm pump pulses, with Gaussian fits.

Fig. 3
Fig. 3

Example of measured gain profiles for (a) 1064-nm-pumped LiIO3 crystal 1 and (b) 1064-nm-pumped KTP crystal 1. The curves labeled SNLO are computed curves from the best-fit nonlinear coefficients.11

Fig. 4
Fig. 4

Example phase-matching curve for 1064-nm-pumped KTP crystal 2. The curve labeled SNLO is a computed11 phase-matching curve with Δk’s based on the KTP Sellmeier equation of Vanherzeele et al.12

Fig. 5
Fig. 5

KDP dzxy value deduced from Choy’s and Byer’s17 ratio dzxy(KDP)/dzxx(LiIO3)=0.088±0.01 for 1319-nm frequency doubling. We use our measured value of dzxx(LiIO3)=3.90 pm/V. The dashed curve is Miller scaling normalized to the standard value of dzxy=0.39 pm/V for 1064-nm frequency doubling. The points at 532 nm and 660 nm have been plotted with small wavelength offsets for clarity.

Fig. 6
Fig. 6

KTP dyyz values measured by Cheung et al.,19 Zondy et al.,5 Boulanger et al.,2-4 Vanherzeele and Bierlein,21 Shoji et al.,1 Nishikawa and Uesugi,20 Anema and Rasing,18 and in the present research. The dashed curve is Miller scaling for second-harmonic generation, normalized to the best-estimate 532-nm point. The points at 532 nm have been plotted with small wavelength offsets for clarity.

Fig. 7
Fig. 7

KTA dyyz values measured by Kato,23 Cheng et al.,22 Boulanger et al.,2-4 and in the present research. The dashed curve is Miller scaling for second-harmonic generation, normalized to the best-estimate 532-nm point. The point labeled modified Boulanger is that of Boulanger multiplied by 1.4 (see text for explanation).

Fig. 8
Fig. 8

KNbO3 dxyy value given by Roberts16 and measured in the present research. The dashed curve is Miller scaling normalized to the 532-nm point.

Fig. 9
Fig. 9

LiIO3 dzxx values measured by Eckardt et al.27 and us in the present and in previous research.15 Our 1064-nm point is derived by assuming dzxx/dyyy=0.49, the value reported by Roberts16 at 532 nm. The dashed curve is Miller scaling normalized to our 532-nm point.

Fig. 10
Fig. 10

LiNbO3 dzxx values measured by Shoji et al.,1 Eckardt et al.,27 and in the present research. The dashed curve is Miller scaling normalized to the best estimate 532-nm point.

Fig. 11
Fig. 11

BBO dyyy values measured by Shoji et al.,1 Eimerl et al.,30 Eckardt et al.,27 Velsko et al.,31 and in the present research. The dashed curve is Miller scaling normalized to the best-estimate 532-nm point. The points at 532 nm have been plotted with small wavelength offsets for clarity.

Tables (1)

Tables Icon

Table 1 Summary of deff and dijk Measurements

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δijk=dijk(-ω1-ω2;ω1, ω2)χii(ω1+ω2)χjj(ω1)χkk(ω2),
Gain=cosh2(γLcrystal),
γ=2deff2Ipωsωinsninpc301/2

Metrics