Abstract

We show that the general limit of power scaling of thin-disk lasers comes not only from the overheating and amplified spontaneous emission (ASE) but also from the surface loss. Overheating or thermal fracture increases the transverse size at the scaling, whereas ASE limits the gain-size product. The gain coefficient should decrease at the scaling. However, the round-trip gain should remain larger than the background loss; hence, the thickness should increase at the scaling. The limit of the output power per single active element occurs when the medium becomes too thick and cannot work efficiently without overheating. The maximum output power scales inversely with the cube of the surface loss coefficient. In the quasi-continuous regime, the average power scales inversely to the product of the duration of pulses to the repetition rate.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
    [Crossref]
  2. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
    [Crossref]
  3. C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
    [Crossref]
  4. C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
    [Crossref]
  5. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
    [Crossref] [PubMed]
  6. N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
    [Crossref]
  7. N. P. Barnes and B. M. Walsh, "Corrections to 'Amplified spontaneous emission-application to Nd:YAG' lasers," IEEE J. Quantum Electron. 35, 1100 (1999).
    [Crossref]
  8. J. J. Zayhowski, "Microchip lasers," Opt. Mater. (Amsterdam, Neth.) 11, 255-267 (1999).
    [Crossref]
  9. C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [Crossref]
  10. E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).
  11. One uses the term "disk" (or "disc"), even if the active element is not circular; it can be rectangular as well. Although the word "disk" means a thing that resembles a flattened cylinder in shape (http://en.wikipedia.org/wiki/Disk), the term "slab" could be more suitable, but here we follow the terminology of other authors.
  12. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
    [Crossref]
  13. R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).
  14. K. Contag, S. Erhard, A. Giesen, "Calculation of optimum design parameters for Yb:YAG thin disk lasers," in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 124-130.
  15. Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).
  16. D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.
  17. D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
    [Crossref]
  18. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [Crossref]
  19. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102-114 (1986).
    [Crossref]
  20. T. Kasamatsu, H. Sekita, and Y. Kuwano, "Temperature dependence and optimization of 970nm diode-pumped Yb:YAG and Yb:Lu:AG lasers," Appl. Opt. 38, 5149-5153 (1999).
    [Crossref]
  21. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, "Ultralow-loss mirror of the parts-in-106 level at 1064nm," Opt. Lett. 20, 530-532 (1995).
    [PubMed]
  22. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).
  23. A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
    [Crossref]

2005 (2)

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[Crossref]

2004 (1)

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

2003 (2)

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

2001 (1)

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

2000 (1)

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

1999 (5)

T. Kasamatsu, H. Sekita, and Y. Kuwano, "Temperature dependence and optimization of 970nm diode-pumped Yb:YAG and Yb:Lu:AG lasers," Appl. Opt. 38, 5149-5153 (1999).
[Crossref]

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[Crossref]

N. P. Barnes and B. M. Walsh, "Corrections to 'Amplified spontaneous emission-application to Nd:YAG' lasers," IEEE J. Quantum Electron. 35, 1100 (1999).
[Crossref]

J. J. Zayhowski, "Microchip lasers," Opt. Mater. (Amsterdam, Neth.) 11, 255-267 (1999).
[Crossref]

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

1996 (1)

C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
[Crossref]

1995 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

1993 (1)

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[Crossref]

1992 (1)

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

1986 (1)

Aschwanden, A.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[Crossref]

N. P. Barnes and B. M. Walsh, "Corrections to 'Amplified spontaneous emission-application to Nd:YAG' lasers," IEEE J. Quantum Electron. 35, 1100 (1999).
[Crossref]

Bartram, R. H.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).

Beach, R. J.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Bibeau, C.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Bisson, J.-F.

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Brick, P.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Brunner, F.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Caird, J. A.

Contag, K.

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

K. Contag, S. Erhard, A. Giesen, "Calculation of optimum design parameters for Yb:YAG thin disk lasers," in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 124-130.

Erhard, S.

K. Contag, S. Erhard, A. Giesen, "Calculation of optimum design parameters for Yb:YAG thin disk lasers," in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 124-130.

Fan, T. Y.

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[Crossref]

Giesen, A.

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

K. Contag, S. Erhard, A. Giesen, "Calculation of optimum design parameters for Yb:YAG thin disk lasers," in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 124-130.

D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.

Gong, M. L.

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

Hader, J.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Häring, R.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Henderson, B.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).

Hnninged, C.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Honea, E. C.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Hügel, H.

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Innerhofer, E.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Kaminskii, A. A.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Kanabe, T.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Karszewski, M.

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

Kasamatsu, T.

Kataoka, I.

Kelle, U.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Keller, U.

D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.

Kim, N. S.

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

Kitajima, N.

Koch, S. W.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Kouznetsov, D.

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[Crossref]

Krupke, W. F.

C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
[Crossref]

W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102-114 (1986).
[Crossref]

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Kumka, M.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Kuwano, Y.

Li, C.

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

Liu, Q.

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

Lu, J.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Lutgen, S.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Marion, J. E.

Mima, K.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Mitake, T.

Moloney, J. V.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Moses, E. I.

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

Muller, D.

D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.

Murai, T.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Naito, K.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Nakai, S.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Nakamura, K.

Nakatsuka, M.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Orth, C. D.

C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
[Crossref]

Pan, Y. Y.

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

Paschotta, M.

D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.

Paschotta, R.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Payne, S. A.

C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
[Crossref]

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Powell, H.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Sekiguchi, H.

Sekita, H.

Shen, D.

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

Shinn, M. D.

Song, J.

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

Stewen, C.

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

Stokowski, S. E.

Südmeyer, T.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

Sutton, S. B.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

Takaichi, K.

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[Crossref]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Ueda, A.

Ueda, K.

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, "High-power single mode solid state laser with short unstable cavity," J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[Crossref]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, "Ultralow-loss mirror of the parts-in-106 level at 1064nm," Opt. Lett. 20, 530-532 (1995).
[PubMed]

Uehara, N.

Uematsu, T.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, "Corrections to 'Amplified spontaneous emission-application to Nd:YAG' lasers," IEEE J. Quantum Electron. 35, 1100 (1999).
[Crossref]

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Wuest, C. R.

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

Yagi, H.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Yamanaka, C.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Yamanaka, M.

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Yanagitani, T.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Zakharian, A. R.

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, "Microchip lasers," Opt. Mater. (Amsterdam, Neth.) 11, 255-267 (1999).
[Crossref]

Acta Phys. Sin. (1)

Q. Liu, M. L. Gong, Y. Y. Pan, C. Li, "Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling," Acta Phys. Sin. 53, 2159-2164 (2004).

Appl. Opt. (1)

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[Crossref]

Appl. Phys. Lett. (1)

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, "Experimental and theoretical analysis of optically pumped semiconductor disk lasers," Appl. Phys. Lett. 83, 1313-1315 (2003).
[Crossref]

Fusion Sci. Technol. (1)

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

IEEE J. Quantum Electron. (3)

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[Crossref]

N. P. Barnes and B. M. Walsh, "Corrections to 'Amplified spontaneous emission-application to Nd:YAG' lasers," IEEE J. Quantum Electron. 35, 1100 (1999).
[Crossref]

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Karszewski, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii," Nd3+:Y2G3 Ceramic laser," Jpn. J. Appl. Phys. Part 2 40, L1277-L1279 (2001).
[Crossref]

Jpn. J. Appl. Phys. Part 1 (1)

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, "Conceptual design studies of a laser diode pumped solid state laser system for laser fusion reactor driver," Jpn. J. Appl. Phys. Part 1 31, 259-273 (1992).
[Crossref]

Nucl. Fusion (1)

C. D. Orth, S. A. Payne, and W. F. Krupke, "A diode pumped solid state laser driver for inertial fusion energy," Nucl. Fusion 36, 75-116 (1996).
[Crossref]

Opt. Lett. (2)

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring,A. Aschwanden, R. Paschotta, C. Hnninged, M. Kumka, and U. Kelle, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[Crossref] [PubMed]

N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, "Ultralow-loss mirror of the parts-in-106 level at 1064nm," Opt. Lett. 20, 530-532 (1995).
[PubMed]

Opt. Mater. (Amsterdam, Neth.) (1)

J. J. Zayhowski, "Microchip lasers," Opt. Mater. (Amsterdam, Neth.) 11, 255-267 (1999).
[Crossref]

Opt. Rev. (1)

C. Li, D. Shen, J. Song, N. S. Kim, and K. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).
[Crossref]

Other (5)

One uses the term "disk" (or "disc"), even if the active element is not circular; it can be rectangular as well. Although the word "disk" means a thing that resembles a flattened cylinder in shape (http://en.wikipedia.org/wiki/Disk), the term "slab" could be more suitable, but here we follow the terminology of other authors.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, "High average power scalable thin-disk laser," U.S. patent 6,347,109 (February 12, 2002).

K. Contag, S. Erhard, A. Giesen, "Calculation of optimum design parameters for Yb:YAG thin disk lasers," in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 124-130.

D. Muller, A. Giesen, M. Paschotta, and U. Keller, "Ultrashort pulse thin-disk lasers and amplifiers," in Femtosecond Technology for Technical and Medical Applications Topics in Applied Physics, Vol. 96 of Springer Series on Topics in Applied Physics (Springer, 2004), pp. 55-72.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Thin-disk laser as an active mirror. Pump is assumed to be efficiently absorbed in the medium, which may require multipass and/or lateral delivery.

Fig. 2
Fig. 2

Output power P s and efficiency η = P s P p versus pump power.

Fig. 3
Fig. 3

Threshold power estimated by Eq. (B4) as function of product N σ e , at I po = 204.5 W mm 2 , V = 0.066 , b = 0.532 , L = 3.4 mm , and h = 0.024 mm for the cases μ = 0.02 and g = 0.05 (thick curve), μ = 0.01 and g = 0.03 (intermediate curve) and μ = 0.001 and g = 0.01 (thin curve). Bars show the minimum by Eq. (B7) (upper tip) and the simple estimate (B9) (lower tip).

Tables (3)

Tables Icon

Table 1 Scaling of Output Power P s and Efficiency η of a Disk Laser a

Tables Icon

Table 2 Latin Notations and Basic Formulas

Tables Icon

Table 3 Greek Notations and Basic Formulas

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

τ = τ o exp ( G L ) .
Δ T = η h P p h 2 k L 2 ,
η h = ω p ω s ω p = 1 η o ,
η o = ω s ω p .
P p , max = 2 k Δ T max L 2 η h h ,
R T = k σ T ( 1 ν ) α E ,
P p , max = 3 R T L 2 η h h .
P p , max = R L 2 h ,
R = min { 3 R T η h 2 k Δ T η h .
( 1 θ β ) exp ( g ) = 1 ,
η output = θ I s L 2 g I s L 2 = 1 β g .
G = g ( 2 h ) = ( β + θ ) ( 2 h ) .
Q = ω p 2 τ 0 ( σ se σ sa σ pe σ pa ) ω p 2 τ 0 σ se ,
P th = Q L 2 g e G L .
P s = η o ( 1 β g ) ( P p P th ) ,
η = P s P p
P s = η o ( 1 β g ) ( P p Q L 2 g e u ) ,
u = G L = g L 2 g , P p = R L 2 h .
L = P p g 2 u R , h = P p g 2 4 u 2 R
P s = η o ( 1 β g ) ( P p Q P 2 g 3 4 R 2 e u u 2 ) .
P s = η o ( 1 β g ) ( P p e 2 16 Q R 2 g 3 P p 2 ) .
P p = 8 R 2 e 2 Q g 3 .
P s = η o ( 1 β g ) 4 R 4 e 2 Q g 3 .
g = 4 3 β .
P p = P p , max = 27 8 e 2 R 2 Q 1 β 3 0.457 R 2 Q β 3 .
P s = P s , max = 27 64 e 2 R 2 Q η o β 3 0.057 R 2 η o Q β 3 ,
η = P s , max P p , max = η o 8 .
L = 9 8 e 2 R Q 1 β 2 , h = 3 8 e 2 R Q 1 β .
P k = R 2 η o Q β 3
η = P s P p = η o ( 1 β g ) ( 1 e 2 16 Q P p g 3 R 2 )
η = η o ( 1 β g e 2 16 Q P p R 2 g 3 ) ,
g = ( 16 β 3 e 2 R 2 Q P p ) 1 4 .
η = η o [ 1 ( 16 e 2 Q P p β 3 27 R 2 ) 1 4 ] .
P p = 27 16 e 2 ( 1 η η o ) 4 R 2 Q β 3 0.228 ( 1 η η o ) 4 R 2 Q β 3 .
P s = η P p .
P s = 27 η 16 e 2 ( 1 η η o ) 4 R 2 f Δ t Q β 3 .
d n 2 d t = ( σ pa j p + σ sa j s ) n 1 ( σ pe j p + σ se j s + 1 τ ) n 2 ,
d n 1 d t = ( σ pa j p + σ sa j s ) n 1 + ( σ pe j p + σ se j s + 1 τ ) n 2 ,
j p = I s ( ω p ) , j s = I p ( ω s ) .
n 1 = 1 τ + σ pe j p + σ se j s 1 τ + ( σ pa + σ pe ) j p + ( σ sa + σ se ) j s ,
n 2 = σ pa j p + σ sa j s 1 τ + ( σ pa + σ pe ) j p + ( σ sa + σ se ) j s .
σ a = σ pa σ se σ pe σ sa σ sa + σ se , σ e = σ pa σ se σ pe σ sa σ pa + σ pe .
A 0 = N σ pa σ se σ sa σ pe σ sa + σ se = N σ a
G 0 = N σ pa σ se σ sa σ pe σ pa + σ pe = N σ e .
I po = ω p τ σ pa + σ pe , I so = ω p τ σ sa + σ se .
U = ( σ sa + σ se ) σ pa σ pa σ se σ sa σ pe , V = ( σ pa + σ pe ) σ sa σ pa σ se σ sa σ pe .
A = ( n 1 σ pa n 2 σ pe ) N = A 0 U + s 1 + p + s ,
G = ( n 2 σ se n 1 σ sa ) N = G 0 p V 1 + p + s ,
p = I p I po , s = I s I so
A A 0 + G G 0 = 1 ,
p = V + ( 1 + s ) G G 0 1 G G 0 .
I th = I po V + G G 0 1 G G 0 .
P th = ( A L 2 h + μ L 2 2 ) I po V + G G 0 1 G G 0 .
P th = ( V G 0 + G ) ( A 0 G 0 h + μ 2 G 0 G ) L 2 I po .
b = A 0 G 0 = σ pa + σ pe σ sa + σ se
P th = ( N σ e + G V ) ( b h + μ 2 N σ e G ) L 2 V I po .
P th = ( b V h X + G U μ 2 X + b U G h + V μ 2 ) L 2 I po .
X = G U b V h ,
G 0 = σ e N = G + G U μ 2 b V h = ( 1 + U μ b V g ) G ,
P th = ( b U g 2 + g U μ b V + μ V ) L 2 I po .
P th g L 2 ω ( 2 τ ) σ se σ sa σ pe σ pa ω p τ 0 L 2 2 σ se g e G L .

Metrics