Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Origin of persistent hole burning of N–V centers in diamond

Not Accessible

Your library or personal account may give you access

Abstract

New satellite features and antiholes in the persistent hole-burning spectrum of N–V centers in diamond, as well as their dependences on applied electric fields and frequency within the inhomogeneous absorption line, are reported. These results, together with reassignments of spin states of this center, permit an understanding of the origin of the satellite holes as well as of possible mechanisms for the persistent hole-burning phenomenon itself. In addition we report narrow optical interference fringes in heterodyne-detected spectra of persistent spectral holes in the N–V defect center in diamond and discuss a recent suggestion for high-resolution Ramsey-fringe hole-burning spectroscopy of solids based on phase-separated fields.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Persistent spectral hole burning induced by ion motion in CaF2:Pr3+:D and SrF2:Pr3+:D crystals

R. J. Reeves and R. M. Macfarlane
J. Opt. Soc. Am. B 9(5) 763-767 (1992)

Spectral hole burning in emerald

Nicole E. Rigby, Neil B. Manson, Lucjan Dubicki, Gordon J. Troup, and Donald R. Hutton
J. Opt. Soc. Am. B 9(5) 775-778 (1992)

Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning

Th. Basché, W. P. Ambrose, and W. E. Moerner
J. Opt. Soc. Am. B 9(5) 829-836 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.