Abstract

We report cascade Raman generation of 313-nm radiation by second Stokes Raman shifting 248-nm pulses in H2. A single seed generator was used to produce the first and second Stokes seed beams. Both collinear- and crossed-beam amplifier configurations were investigated. A peak conversion efficiency of 43% was obtained in a 2-m amplifier cell containing 16 atm of hydrogen. Under optimized conditions, the phase front of the second Stokes beam exhibited only a fraction of a wave of aberration. We find that a trade-off between high beam quality and high conversion efficiency exists in a system that relies on a single seed generator.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Komine, W. H. Long, E. A. Stappaerts, S. J. Brosnan, “Beam cleanup and low-distortion amplification in efficient high-gain hydrogen Raman amplifiers,” J. Opt. Soc. Am. B 3, 1428 (1986).
    [CrossRef]
  2. J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, G. Calame, “Beam cleanup with stimulated Raman scattering in the intensity-averaging regime,” J. Opt. Soc. Am. B 3, 1408 (1986).
    [CrossRef]
  3. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37 (1988).
    [CrossRef]
  4. A. Luches, V. Nassisi, M. R. Perrone, “Stimulated Raman scattering in H2–Ar mixtures,” Opt. Lett. 12, 33 (1987).
    [CrossRef] [PubMed]
  5. A. Flusberg, D. Korf, “Wave-front replication versus beam cleanup by stimulated scattering,” J. Opt. Soc. Am. B 4, 687 (1987).
    [CrossRef]
  6. C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989).
    [CrossRef]
  7. P. R. Peterson, D. A. Cardimona, A. Gavrielides, “Anti-Stokes generation in focused geometries,” J. Opt. Soc. Am. B 4, 1970 (1987).
    [CrossRef]
  8. Z. W. Li, C. Radzewicz, M. G. Raymer, “Cancellation of laser phase fluctuations in Stokes and anti-Stokes generation,” J. Opt. Soc. Am. B 5, 2340 (1988).
    [CrossRef]
  9. B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988).
    [CrossRef]
  10. B. Richie, “Theory of transient stimulated Raman scattering in H2,” Phys. Rev. A 35, 5108 (1987).
    [CrossRef]
  11. A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988).
    [CrossRef] [PubMed]
  12. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
    [CrossRef]
  13. J. R. Ackerhalt, “Novel analytic solutions to general four-wave-mixing problems in a Raman medium,” Phys. Rev. Lett. 46, 922 (1981).
    [CrossRef]
  14. D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
    [CrossRef]
  15. M. D. Duncan, Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1989).
  16. X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988).
    [CrossRef]
  17. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
    [CrossRef]
  18. T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).
  19. M. D. Duncan, R. Mahon, J. Reintjes, L. L. Tankersley, “Parametric Raman gain suppression in D2and H2,” Opt. Lett. 11, 803 (1986).
    [CrossRef] [PubMed]
  20. K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986).
    [CrossRef]
  21. M. G. Raymer, K. Rzazewski, J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71 (1982).
    [CrossRef] [PubMed]
  22. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Control of transient Raman amplifiers,” Proc. Soc. Photo-Opt. Instrum. Eng. 874, 200 (1988).
  23. M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
    [CrossRef]
  24. S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).
  25. J. P. Paranen, M. J. Shaw, “High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374 (1986).
    [CrossRef]
  26. J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982).
    [CrossRef]
  27. J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
    [CrossRef]

1989

1988

Z. W. Li, C. Radzewicz, M. G. Raymer, “Cancellation of laser phase fluctuations in Stokes and anti-Stokes generation,” J. Opt. Soc. Am. B 5, 2340 (1988).
[CrossRef]

B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988).
[CrossRef]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37 (1988).
[CrossRef]

A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988).
[CrossRef] [PubMed]

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988).
[CrossRef]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Control of transient Raman amplifiers,” Proc. Soc. Photo-Opt. Instrum. Eng. 874, 200 (1988).

1987

1986

1984

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
[CrossRef]

1982

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

M. G. Raymer, K. Rzazewski, J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71 (1982).
[CrossRef] [PubMed]

1981

J. R. Ackerhalt, “Novel analytic solutions to general four-wave-mixing problems in a Raman medium,” Phys. Rev. Lett. 46, 922 (1981).
[CrossRef]

D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
[CrossRef]

M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

1974

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).

1970

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

1965

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[CrossRef]

Ackerhalt, J. R.

J. R. Ackerhalt, “Novel analytic solutions to general four-wave-mixing problems in a Raman medium,” Phys. Rev. Lett. 46, 922 (1981).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).

Bischel, W. K.

A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988).
[CrossRef] [PubMed]

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[CrossRef]

Bobs, B.

B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988).
[CrossRef]

Brosnan, S. J.

Calame, G.

Cardimona, D. A.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Chang, R. S. F.

Cheng, X.

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988).
[CrossRef]

D’yakov, Yu. E.

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).

Duignan, M. T.

Duncan, M. D.

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37 (1988).
[CrossRef]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Control of transient Raman amplifiers,” Proc. Soc. Photo-Opt. Instrum. Eng. 874, 200 (1988).

M. D. Duncan, R. Mahon, J. Reintjes, L. L. Tankersley, “Parametric Raman gain suppression in D2and H2,” Opt. Lett. 11, 803 (1986).
[CrossRef] [PubMed]

M. D. Duncan, Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1989).

Eimerl, D.

D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
[CrossRef]

Esherick, P.

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

Fabricius, N.

K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986).
[CrossRef]

Flusberg, A.

Gavrielides, A.

Goldhar, J.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
[CrossRef]

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

Hargrove, R. S.

D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
[CrossRef]

Hickman, A. P.

C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989).
[CrossRef]

A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988).
[CrossRef] [PubMed]

Kobayashi, T.

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988).
[CrossRef]

Komine, H.

Korf, D.

Lehmberg, R. H.

Li, Z. W.

Long, W. H.

Luches, A.

Mahon, R.

Michie, R. B.

C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989).
[CrossRef]

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

Mostowski, J.

M. G. Raymer, K. Rzazewski, J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71 (1982).
[CrossRef] [PubMed]

M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

Murray, J. R.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
[CrossRef]

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

Nassisi, V.

Nattermann, K.

K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986).
[CrossRef]

Paisner, J. A.

D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
[CrossRef]

Paranen, J. P.

Pavlov, L. I.

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).

Perrone, M. R.

Peterson, P. R.

Radzewicz, C.

Raymer, M. G.

Raymond, T. D.

C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989).
[CrossRef]

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

Reintjes, J.

Reiser, C.

C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989).
[CrossRef]

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

Richie, B.

B. Richie, “Theory of transient stimulated Raman scattering in H2,” Phys. Rev. A 35, 5108 (1987).
[CrossRef]

Rzazewski, K.

Shaw, M. J.

Shen, Y. R.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[CrossRef]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Stappaerts, E. A.

Tankersley, L. L.

Taylor, M. W.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
[CrossRef]

von der Linde, D.

K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986).
[CrossRef]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Warner, C.

B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988).
[CrossRef]

IEEE J. Quantum Electron.

B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988).
[CrossRef]

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

IEEE J. Quantum. Electron.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988).
[CrossRef]

Opt. Commun.

K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986).
[CrossRef]

Opt. Lett.

Phys. Rev.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
[CrossRef]

Phys. Rev. A

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

B. Richie, “Theory of transient stimulated Raman scattering in H2,” Phys. Rev. A 35, 5108 (1987).
[CrossRef]

A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988).
[CrossRef] [PubMed]

M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

Phys. Rev. Lett.

J. R. Ackerhalt, “Novel analytic solutions to general four-wave-mixing problems in a Raman medium,” Phys. Rev. Lett. 46, 922 (1981).
[CrossRef]

D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Control of transient Raman amplifiers,” Proc. Soc. Photo-Opt. Instrum. Eng. 874, 200 (1988).

Sov. Phys. JETP

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).

Other

M. D. Duncan, Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Intensities calculated by numerical integration of Eq. (1) for P (shown as a dotted curve), S1 (dashed), S2 (solid), and S3 (also solid) are shown as a function of distance z of propagation through the H2 cell. Intensities are normalized to the initial P intensity, 11 MW/cm2. The initial values for the S1, S2, and S3 seeds are 5%, 1.5%, and 10−3%, respectively.

Fig. 2
Fig. 2

The apparatus for S2 generation and amplification utilized two cells filled with H2 at 16-atm apertures (A’s), calibrated attenuators in each beam (T), variable attenuators (VA’s), six photodiodes (PDs), a charge-integrating analog-to-digital converter (ADC), and a computer for data storage.

Fig. 3
Fig. 3

With the generator conditions set to be at 2 threshold, the 2 seed is generated late with respect to the P and S1 beams. (a) The three beams entering the collinear amplifier, (b) beams emerging from the collinear amplifier. The same intensity scale is used for (a) and (b), but the data are not corrected for the wavelength dependence of the streak-camera photocathode response and beam-splitter dielectric coatings.

Fig. 4
Fig. 4

The intensity pattern of the combined S1 and S2 seed beams entering the amplifier typically shows a hot center with one or more sidelobes; this example is a worst-case pattern.

Fig. 5
Fig. 5

With the generator conditions set to be far above S2 threshold, the S2 seed is generated promptly. (a) Beams entering the amplifier, (b) those exiting. Intensity scales are the same in (a) and (b), but the data are not corrected for the wavelength dependence of the streak-camera photocathode response and beam-splitter dielectric coatings.

Fig. 6
Fig. 6

The probability P(W) of observing a seed pulse of energy W is shown versus W/〈W〉, the pulse energy divided by the average pulse energy, for 104 shots under conditions of prompt S2 seed generation.

Fig. 7
Fig. 7

Input P pulse shape for the data in Fig. 8 and 9.

Fig. 8
Fig. 8

The experimentally observed output S2 energy, S2f, is plotted versus the input P energy, Pi, for laser shots having input S2 seed energies within ±10% of their respective averages. The dashed line shows the theoretical maximum conversion. The solid curve is a fit to the data.

Fig. 9
Fig. 9

The observed average S2 energy, S2f, shows a flat relationship with the input average S2 energy, S2i, for shots having input P and S1 energies within ±10% of the average. Also shown is the prediction of Eq. (1) (solid line) for parameters outlined in the text.

Fig. 10
Fig. 10

The integrated input S1 fluence pattern (a) is a smooth Gaussian shape, while the output S1 fluence pattern from the crossed-beam amplifier (b) shows slight distortions and a somewhat larger size.

Fig. 11
Fig. 11

The input S2 fluence pattern (a) usually contains a single central peak best described as a distorted Gaussian with added noise. The S2 fluence pattern emerging from the crossed-beam amplifier (b) retains the highly peaked, relatively smooth nature of the input shape.

Fig. 12
Fig. 12

When the generator produces a prompt S2 seed, the S2 beam phase front exiting the crossed-beam amplifier shows half-wave distortions (a). The Strehl ratio computed from this pattern is 0.77, as shown by the point-spread function (PSF) (b). We did not directly measure the far-field pattern.

Fig. 13
Fig. 13

A smooth spatial profile on the S2 seed beam produces an improved phase front for the amplified 2 beam (see Fig. 12). The distortions shown in (a) are fewer and of lower magnitude, resulting in an exceptional Strehl ratio of 0.9 (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d A m d z = β ω m ( A m - 1 2 - A m + 1 2 ) A m ,

Metrics