Abstract

In this paper, we study the possible realization of a classical system with quantum characteristics on the level of classical optics. Indeed, following Arrizon et al. [J. Opt. Soc. Am. A 32, 1140 (2015) [CrossRef]  ], we first use quantum optics formalism to consider the propagation of two coherent states in a Kerr medium where the interaction between the two states is described by the cross-Kerr interaction. We then draw an analogy between the dynamical process of this structure and that of a Gaussian wave propagating in a quadratic gradient index medium. We demonstrate that by using this structure, we can generate a state that oscillates between a classically entangled state and a separable one.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Butterfielf and J. Earman, Philosophy of Physics, Part A and B (Elsevier, 2007).
  2. M. Schlosshauer, Decoherence and the Quantum to Classical Transition (Springer-Verlag, 2007).
  3. P. C. E. Stamp, “The decoherence puzzle,” Stud. Hist. Philos. Modern Phys. 37, 467–497 (2006).
    [Crossref]
  4. A. Y. Khrennikov, Ubiquitous Quantum Structure (Springer, 2014).
  5. F. Bagarello, Quantum Dynamics for Classical Systems (Wiley, 2013).
  6. F. Soto-Eguibar, V. Arrizon, A. Zúñiga-Segundo, and H. M. Moya-Cessa, “Optical realization of quantum Kerr medium dynamics,”Opt. Lett. 39, 6158–6161 (2014).
    [Crossref]
  7. E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
    [Crossref]
  8. A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
    [Crossref]
  9. N. Korolkova and L. G. Leuchs, “Quantum correlations in separable multi-mode states and in classically entangled light,” Rep. Prog. Phys. 82, 056001 (2019).
    [Crossref]
  10. E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
    [Crossref]
  11. Y. L. Loh and M. Kim, “Visualizing spin states using the spin coherent state representation,” Am. J. Phys. 83, 30 (2015).
    [Crossref]
  12. H. M. Moya-Cessa, M. Fernández Guasti, V. M. Arrizon, and S. Chavez-Cerda, “Optical realization of quantum-mechanical invariants,” Opt. Lett. 34, 1459–1461 (2009).
    [Crossref]
  13. R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987).
    [Crossref]
  14. J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
    [Crossref]
  15. A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
    [Crossref]
  16. H. M. Moya-Cessa, “Relation between the Glauber–Sudarshan and Kirkwood–Rihaczek distribution functions,” J. Mod. Opt. 60, 726–730 (2013).
    [Crossref]
  17. R. Mar-Sarao and H. M. Moya-Cessa, “Optical realization of a quantum beam splitter,” Opt. Lett. 33, 1966–1968 (2008).
    [Crossref]
  18. S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, “Quantumlike systems in classical optics: applications of quantum optical methods,” J. Opt. Soc. Am. B 24, 404–407 (2007).
    [Crossref]
  19. V. Arrizon, F. Soto-Eguibar, A. Zúñiga-Segundo, and H. M. Moya-Cessa, “Revival and splitting of a Gaussian beam in gradient index media,” J. Opt. Soc. Am. A 32, 1140–1145 (2015).
    [Crossref]
  20. H. M. Moya-Cessa, F. Soto-Eguibar, V. Arrizon, and A. A. Zúñiga-Segundo, “Generalized revival and splitting of an arbitrary optical field in GRIN media,” Opt. Express 24, 10445–10457 (2016).
    [Crossref]
  21. S. M. Chumakov and K. B. Wolf, “Supersymmetry in Helmholtz optics,” Phys. Lett. A 193, 51–53 (1994).
    [Crossref]
  22. M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
    [Crossref]
  23. A. Zúñiga-Segundo, B. M. Rodriguez-Lara, D. J. Fernández, and H. M. Moya-Cessa, “Jacobi photonic lattices and their SUSY partners,” Opt. Express 22, 987–994 (2014).
    [Crossref]
  24. M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
    [Crossref]
  25. M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
    [Crossref]
  26. M.-A. Miri, M. Heinrich, and D. N. Christodoulides, “SUSY-inspired one-dimensional transformation optics,” Optica 1, 89–95 (2014).
    [Crossref]
  27. Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
    [Crossref]
  28. M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
    [Crossref]
  29. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
    [Crossref]
  30. B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
    [Crossref]
  31. C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
    [Crossref]
  32. A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
    [Crossref]
  33. C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  34. D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
    [Crossref]
  35. H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
    [Crossref]
  36. I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
    [Crossref]
  37. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, 2002).
  38. Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
    [Crossref]
  39. K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
    [Crossref]
  40. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
    [Crossref]
  41. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
    [Crossref]
  42. M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
    [Crossref]
  43. J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
    [Crossref]
  44. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).
  45. Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
    [Crossref]
  46. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
  47. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2011).
  48. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

2019 (3)

A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
[Crossref]

N. Korolkova and L. G. Leuchs, “Quantum correlations in separable multi-mode states and in classically entangled light,” Rep. Prog. Phys. 82, 056001 (2019).
[Crossref]

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

2018 (2)

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

2016 (1)

2015 (5)

V. Arrizon, F. Soto-Eguibar, A. Zúñiga-Segundo, and H. M. Moya-Cessa, “Revival and splitting of a Gaussian beam in gradient index media,” J. Opt. Soc. Am. A 32, 1140–1145 (2015).
[Crossref]

Y. L. Loh and M. Kim, “Visualizing spin states using the spin coherent state representation,” Am. J. Phys. 83, 30 (2015).
[Crossref]

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

2014 (6)

2013 (5)

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

H. M. Moya-Cessa, “Relation between the Glauber–Sudarshan and Kirkwood–Rihaczek distribution functions,” J. Mod. Opt. 60, 726–730 (2013).
[Crossref]

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
[Crossref]

2012 (1)

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

2011 (1)

J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
[Crossref]

2010 (1)

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

2009 (4)

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

H. M. Moya-Cessa, M. Fernández Guasti, V. M. Arrizon, and S. Chavez-Cerda, “Optical realization of quantum-mechanical invariants,” Opt. Lett. 34, 1459–1461 (2009).
[Crossref]

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[Crossref]

2008 (1)

2007 (2)

S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, “Quantumlike systems in classical optics: applications of quantum optical methods,” J. Opt. Soc. Am. B 24, 404–407 (2007).
[Crossref]

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

2006 (1)

P. C. E. Stamp, “The decoherence puzzle,” Stud. Hist. Philos. Modern Phys. 37, 467–497 (2006).
[Crossref]

2004 (1)

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[Crossref]

2001 (1)

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

1999 (1)

C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
[Crossref]

1994 (1)

S. M. Chumakov and K. B. Wolf, “Supersymmetry in Helmholtz optics,” Phys. Lett. A 193, 51–53 (1994).
[Crossref]

1989 (1)

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

1987 (1)

R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987).
[Crossref]

Agarwal, G.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Almeida, M.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Andrea, A.

A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
[Crossref]

Arrizon, V.

Arrizon, V. M.

Auccaise, R.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Bagarello, F.

F. Bagarello, Quantum Dynamics for Classical Systems (Wiley, 2013).

Bao, C.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, 2002).

Bennett, C. H.

C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
[Crossref]

Bienvenu, N.

A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
[Crossref]

Butterfielf, J.

J. Butterfielf and J. Earman, Philosophy of Physics, Part A and B (Elsevier, 2007).

Celeri, L. C.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Chavez-Cerda, S.

Chávez-Cerda, S.

Chen, H.

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Christodoulides, D. N.

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

M.-A. Miri, M. Heinrich, and D. N. Christodoulides, “SUSY-inspired one-dimensional transformation optics,” Optica 1, 89–95 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2011).

Chumakov, S. M.

S. M. Chumakov and K. B. Wolf, “Supersymmetry in Helmholtz optics,” Phys. Lett. A 193, 51–53 (1994).
[Crossref]

Davidovich, L.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

de Faria, J. G. P.

J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
[Crossref]

de Melo, F.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

de Oliveira, J. G. G.

J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
[Crossref]

Dehdashti, Sh.

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
[Crossref]

Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
[Crossref]

Denaz, C.

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

Denz, C.

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

Earman, J.

J. Butterfielf and J. Earman, Philosophy of Physics, Part A and B (Elsevier, 2007).

Eberly, J. H.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[Crossref]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[Crossref]

Eleuch, H.

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

El-Ganainy, R.

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

Fernández, D. J.

Fernández Guasti, M.

Forbes, A.

A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
[Crossref]

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

Gavini-Viana, A.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Gomez-Reino, C.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, 2002).

Harouni, M. B.

Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
[Crossref]

Heinrich, M.

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

M.-A. Miri, M. Heinrich, and D. N. Christodoulides, “SUSY-inspired one-dimensional transformation optics,” Optica 1, 89–95 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

Hernandez-Herrejon, J. C.

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

Hor-Meyll, M.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

Hradil, Z.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Hu, C. Y.

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Khrennikov, A. Y.

A. Y. Khrennikov, Ubiquitous Quantum Structure (Springer, 2014).

Kim, M.

Y. L. Loh and M. Kim, “Visualizing spin states using the spin coherent state representation,” Am. J. Phys. 83, 30 (2015).
[Crossref]

Klimov, A. B.

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

Knight, P. L.

R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987).
[Crossref]

Korolkova, N.

N. Korolkova and L. G. Leuchs, “Quantum correlations in separable multi-mode states and in classically entangled light,” Rep. Prog. Phys. 82, 056001 (2019).
[Crossref]

Krause, J.

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

Leuchs, G.

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

Leuchs, L. G.

N. Korolkova and L. G. Leuchs, “Quantum correlations in separable multi-mode states and in classically entangled light,” Rep. Prog. Phys. 82, 056001 (2019).
[Crossref]

Li, R.

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

Liu, X.

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

Loh, Y. L.

Y. L. Loh and M. Kim, “Visualizing spin states using the spin coherent state representation,” Am. J. Phys. 83, 30 (2015).
[Crossref]

Loudon, R.

R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987).
[Crossref]

Mahdifar, A.

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
[Crossref]

Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
[Crossref]

Majari, P.

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mar-Sarao, R.

Maziero, J.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Miri, M.-A.

M.-A. Miri, M. Heinrich, and D. N. Christodoulides, “SUSY-inspired one-dimensional transformation optics,” Optica 1, 89–95 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

Motka, L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Moya-Cessa, H. M.

H. M. Moya-Cessa, F. Soto-Eguibar, V. Arrizon, and A. A. Zúñiga-Segundo, “Generalized revival and splitting of an arbitrary optical field in GRIN media,” Opt. Express 24, 10445–10457 (2016).
[Crossref]

V. Arrizon, F. Soto-Eguibar, A. Zúñiga-Segundo, and H. M. Moya-Cessa, “Revival and splitting of a Gaussian beam in gradient index media,” J. Opt. Soc. Am. A 32, 1140–1145 (2015).
[Crossref]

F. Soto-Eguibar, V. Arrizon, A. Zúñiga-Segundo, and H. M. Moya-Cessa, “Optical realization of quantum Kerr medium dynamics,”Opt. Lett. 39, 6158–6161 (2014).
[Crossref]

A. Zúñiga-Segundo, B. M. Rodriguez-Lara, D. J. Fernández, and H. M. Moya-Cessa, “Jacobi photonic lattices and their SUSY partners,” Opt. Express 22, 987–994 (2014).
[Crossref]

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

H. M. Moya-Cessa, “Relation between the Glauber–Sudarshan and Kirkwood–Rihaczek distribution functions,” J. Mod. Opt. 60, 726–730 (2013).
[Crossref]

H. M. Moya-Cessa, M. Fernández Guasti, V. M. Arrizon, and S. Chavez-Cerda, “Optical realization of quantum-mechanical invariants,” Opt. Lett. 34, 1459–1461 (2009).
[Crossref]

R. Mar-Sarao and H. M. Moya-Cessa, “Optical realization of a quantum beam splitter,” Opt. Lett. 33, 1966–1968 (2008).
[Crossref]

S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, “Quantumlike systems in classical optics: applications of quantum optical methods,” J. Opt. Soc. Am. B 24, 404–407 (2007).
[Crossref]

Moya-Cessa, J. R.

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Nape, I.

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

Ndagano, B.

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

Nemes, M. C.

J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2011).

Noh, C.

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

Nolte, S.

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

Obrien, J. L.

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Otte, E.

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

Perez, M. V.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, 2002).

Perez-Leija, A.

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

Raoofi, M.

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

Rarity, J. G.

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Rehacek, J.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Ribeiro, P.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Rigas, I.

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

Rodriguez-Lara, B. M.

Roknizadeh, R.

Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
[Crossref]

Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
[Crossref]

Roknizahed, R.

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Rosales-Guzman, C.

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

Salles, A.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Sanchez-Soto, L. L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Sánchez-Soto, L. L.

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

Schlosshauer, M.

M. Schlosshauer, Decoherence and the Quantum to Classical Transition (Springer-Verlag, 2007).

Scully, M. O.

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).

Serra, R. M.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Setare, M. R.

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

Shor, P. W.

C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
[Crossref]

Smolin, J. A.

C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
[Crossref]

Soares-Pinto, D. O.

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Soto-Eguibar, F.

Stamp, P. C. E.

P. C. E. Stamp, “The decoherence puzzle,” Stud. Hist. Philos. Modern Phys. 37, 467–497 (2006).
[Crossref]

Stoklasa, B.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Stützer, S.

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

Szameit, A.

M. Heinrich, M.-A. Miri, S. Stützer, S. Nolte, D. N. Christodoulides, and A. Szameit, “Observation of supersymmetric scattering in photonic lattices,” Opt. Lett. 39, 6130–6133 (2014).
[Crossref]

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

Valles, A.

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

Walborn, S.

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Walther, H.

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

Walther, T.

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wolf, K. B.

S. M. Chumakov and K. B. Wolf, “Supersymmetry in Helmholtz optics,” Phys. Lett. A 193, 51–53 (1994).
[Crossref]

K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).

Yu, T.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[Crossref]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).

Zúñiga-Segundo, A.

Zúñiga-Segundo, A. A.

Zyczkowski, K.

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

Am. J. Phys. (1)

Y. L. Loh and M. Kim, “Visualizing spin states using the spin coherent state representation,” Am. J. Phys. 83, 30 (2015).
[Crossref]

Int. J. Geom. Method Mod. Phys. (1)

Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent state of α-deformed Weyl–Heisenberg algebra,” Int. J. Geom. Method Mod. Phys. 10, 1350014 (2013).
[Crossref]

Int. J. Mod. Phys. B (1)

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

J. Mod. Opt. (3)

R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987).
[Crossref]

H. M. Moya-Cessa, “Relation between the Glauber–Sudarshan and Kirkwood–Rihaczek distribution functions,” J. Mod. Opt. 60, 726–730 (2013).
[Crossref]

M. R. Setare, P. Majari, C. Noh, and Sh. Dehdashti, “Photonic realization of the deformed Dirac equation via the segmented graphene nanoribbons under inhomogeneous strain,” J. Mod. Opt. 66, 1663–1667 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

Sh. Dehdashti, R. Li, X. Liu, M. Raoofi, and H. Chen, “Role of intertwined Hamiltonian in two dimensional classical optics,” Laser Phys. 25, 075201 (2015).
[Crossref]

Sh. Dehdashti, M. B. Harouni, A. Mahdifar, and R. Roknizadeh, “Deformed Weyl–Heisenberg algebra and quantum decoherence effect,” Laser Phys. 24, 055203 (2014).
[Crossref]

Light Sci. Appl. (1)

E. Otte, C. Rosales-Guzman, B. Ndagano, C. Denz, and A. Forbes, “Entanglement beating in free space through spin–orbit coupling,” Light Sci. Appl. 7, 18009 (2018).
[Crossref]

Nat. Commun. (1)

M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, “Supersymmetric mode converters,” Nat. Commun. 5, 3698 (2014).
[Crossref]

New J. Phys (1)

I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, “Nonlinear cross-Kerr quasiclassical dynamics,” New J. Phys 15, 043038 (2013).
[Crossref]

New J. Phys. (1)

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sanchez-Soto, and G. Agarwal, “Experimental violation of a Bell-like inequality with optical vortex beams,” New J. Phys. 17, 113046 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Philos. Trans. R. Soc. A (1)

D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra, and L. C. Celeri, “On the quantumness of correlations in nuclear magnetic resonance,” Philos. Trans. R. Soc. A 370, 4821–4836 (2012).
[Crossref]

Phys. Lett. A (2)

J. G. G. de Oliveira, J. G. P. de Faria, and M. C. Nemes, “Residual entanglement and sudden death: a direct connection,” Phys. Lett. A 375, 4255–4260 (2011).
[Crossref]

S. M. Chumakov and K. B. Wolf, “Supersymmetry in Helmholtz optics,” Phys. Lett. A 193, 51–53 (1994).
[Crossref]

Phys. Rev. A (4)

E. Otte, I. Nape, C. Rosales-Guzman, A. Valles, C. Denaz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A 98, 053818 (2018).
[Crossref]

J. Krause, M. O. Scully, T. Walther, and H. Walther, “Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser,” Phys. Rev. A 39, 1915 (1989).
[Crossref]

A. Perez-Leija, J. C. Hernandez-Herrejon, H. M. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Generating photon-encoded W states in multiport waveguide-array systems,” Phys. Rev. A 87, 013842 (2013).
[Crossref]

K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, “Dynamics of quantum entanglement,” Phys. Rev. A 65, 012101 (2001).
[Crossref]

Phys. Rev. B (1)

C. Y. Hu, W. J. Munro, J. L. Obrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Phys. Rev. Lett. (3)

C. H. Bennett, P. W. Shor, and J. A. Smolin, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett. 83, 3081 (1999).
[Crossref]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[Crossref]

M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, “Supersymmetric optical structures,” Phys. Rev. Lett. 110, 233902 (2013).
[Crossref]

Prog. Opt. (1)

A. Forbes, A. Andrea, and N. Bienvenu, “Classically entangled light,” Prog. Opt. 64, 99–153 (2019).
[Crossref]

Quant. Inf. Process. (1)

A. Mahdifar, Sh. Dehdashti, R. Roknizahed, and H. Chen, “Curvature detection by entanglement generation using a beam splitter,” Quant. Inf. Process. 14, 2895–2907 (2015).
[Crossref]

Rep. Prog. Phys. (1)

N. Korolkova and L. G. Leuchs, “Quantum correlations in separable multi-mode states and in classically entangled light,” Rep. Prog. Phys. 82, 056001 (2019).
[Crossref]

Rev. Mod. Phys. (1)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Science (2)

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[Crossref]

M. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn, P. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[Crossref]

Stud. Hist. Philos. Modern Phys. (1)

P. C. E. Stamp, “The decoherence puzzle,” Stud. Hist. Philos. Modern Phys. 37, 467–497 (2006).
[Crossref]

Other (9)

A. Y. Khrennikov, Ubiquitous Quantum Structure (Springer, 2014).

F. Bagarello, Quantum Dynamics for Classical Systems (Wiley, 2013).

J. Butterfielf and J. Earman, Philosophy of Physics, Part A and B (Elsevier, 2007).

M. Schlosshauer, Decoherence and the Quantum to Classical Transition (Springer-Verlag, 2007).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, 2002).

K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2011).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Variation of probability density of $|\psi(t_1)\rangle,|\psi(t_2)\rangle,|\psi(t_3)\rangle$, and $|\psi(t_4)\rangle$ in plots (a), (b), (c), and (d), respectively. In addition, based on the analogy, they show the field from Eq. (18) at $z=0,z=\pi,z=4\pi/3$, and $z=\pi$.
Fig. 2.
Fig. 2. Linear entropy $S(z)$ as a function of $z$ for different values of $\alpha = \beta$, $\alpha = \beta = 1/2$, $\alpha = \beta = 1$, $\alpha = \beta = 2$, and $\alpha = \beta = 10$, respectively, with green, blue, red, and black lines and with $\kappa = 1$.
Fig. 3.
Fig. 3. Values of the linear entropy $S({z_N})$ for different values of $N$, with $\kappa = 1$.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H ^ = H ^ a + H ^ b + H ^ a , b ,
H ^ i = ω n ^ i + μ n ^ i 2 ,
H ^ a , b = κ n ^ a n ^ b ,
i t | ψ ( t ) = H ^ | ψ ( t ) ,
| φ ( t ) = exp [ i H ^ t ] | n a , n b = e i ω t ( n a + n b ) e i μ t ( n a 2 + n b 2 ) e i κ t n a n b | n a , n b .
| ψ ( 0 ) = | α | β = e | α | 2 + | β | 2 2 n , m = 0 α n β m n ! m ! | n , m ,
| ψ ( t ) = e | α | 2 / 2 | β | 2 / 2 n , m = 0 ( α e i ω t ) n e i μ t n 2 n ! × ( β e i ω t ) m e i μ t m 2 m ! e i κ m n t | n , m ,
μ t 2 = π 2 , κ t 2 = 2 π 2 + 2 s π , l , s N ,
| ψ ( t 2 ) = e | α | 2 / 2 | β | 2 / 2 n , m = 0 ( α e i ω t 2 ) n n ! ( β e i ω t 2 ) m m ! × e i π ( n + m ) 2 / 2 | n , m .
| ψ ( t 2 ) = e ( | α | 2 + | β | 2 ) / 2 J = 0 ( β e i ω μ π 2 ) 2 J 2 J ! | α β , 2 J su ( 2 ) i J = 0 ( β e i ω μ π 2 ) ( 2 J + 1 ) / 2 ( 2 J + 1 ) ! | α β , 2 J + 1 su ( 2 ) ,
| α β , N su ( 2 ) = e α β a ^ b ^ | 0 , N = n = 0 J J ! n ! ( J n ) ! ( α β ) n | n , J n .
μ t N = π N + 2 l π , κ t N = 2 π N + 2 s π , l , s N ,
ψ ( t N ) = e ( | α | 2 + | β | 2 ) / 2 [ s = 0 N 1 e ( s π / N ) × J = 0 β e i J ω μ π N J ! | α β , N J + s su ( 2 ) ] ,
2 E z 2 = ( 2 E x 2 + 2 E y 2 + k 2 n 2 ( x , y ) ) E ,
n 2 ( x , y ) = n 0 2 [ 1 g 2 ( x 2 + y 2 ) ] ,
E ( x , y , z ) = e i z ζ 2 2 η ( n ^ x + n ^ y + 1 ) E ( x , y , 0 ) ,
E ( x , y ) = m , m = 0 c m , m φ m ( x ) φ m ( y ) ,
φ m ( ξ ) = ( η π ) 1 / 4 1 2 m m ! e η x 2 / 2 H m ( η x ) , ξ = x , y ,
E ( x , y , z ) e i ζ ~ z F ^ ( n ^ x , n ^ y ) E ( x , y ) ,
F ^ ( n ^ x , n ^ y ) = 1 η ζ ~ 2 ( n ^ x + n ^ y ) η 2 2 ζ ~ 4 ( n ^ x 2 + n ^ y 2 ) + η 2 ζ ~ 4 n ^ x n ^ y
E ( x , y , 0 ) = ψ α ( x ) ψ β ( y ) ,
ψ γ ( ξ ) = ( η π ) 1 / 4 e η 2 ( ξ 2 η ( γ ) ) 2 e i 2 η ( γ ) ξ i ( γ ) ( γ ) = e | γ | 2 / 2 n = 0 γ n n ! φ n ( ξ ) , ξ = x , y ,
S ( ρ a ) = 1 T r a ( ρ ^ a 2 ) ,
ρ ^ = | ψ ( z ) ψ ( z ) | ,
ρ ^ a = e ( | α | 2 + | β | 2 ) n , m = 0 ( α e i ω z ) n e i μ z n 2 n ! ( α e i ω z ) m e i μ z m 2 m ! × e | β | 2 exp ( i κ z ( m n ) ) | n m | .
S ( ρ ^ a ) = 1 e 2 ( | α | 2 + | β | 2 ) × n , m = 0 | α | 2 n + 2 m n ! m ! e 2 | β | 2 cos κ z ( m n ) .
S ( ρ ^ a ) 1 e 4 | β | 2 ,
S ( z N ) = 1 e 2 ( | α | 2 + | β | 2 ) n , m = 0 | α | 2 n + 2 m n ! m ! e 2 | β | 2 cos ( 2 π ( m n ) N ) .

Metrics