Abstract

The sensitivity advantage of waveguide-enhanced Raman spectroscopy (WERS) over free-space Raman, measured by the signal-to-noise ratio, is well established for thin molecular layer sensing, which traditionally relies on confocal Raman setups. However, for bulk liquid or gas samples, WERS must be benchmarked against nonconfocal Raman configurations. We use ray tracing to calculate the power collection efficiency of several model free-space systems, such as microscopes and probes, encompassing both single-objective and dual-lens systems. It is shown that considering only the focal volume of the source beam or the confocal volume of the microscope significantly underestimates the collected power from free-space Raman systems. We show that waveguide-based systems can still outperform high signal collection free-space systems in terms of both the signal collection efficiency and signal-to-noise ratio.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29, 37–50 (1995).
    [Crossref]
  2. G. J. Veldhuis, O. Parriaux, H. J. Hoekstra, and P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensors,” J. Lightwave Technol. 18, 677–682 (2000).
    [Crossref]
  3. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93 (2006).
    [Crossref]
  4. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
    [Crossref]
  5. N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
    [Crossref]
  6. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032 (2009).
    [Crossref]
  7. Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
    [Crossref]
  8. Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 52 and 66  µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8, 1305 (2018).
    [Crossref]
  9. D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
    [Crossref]
  10. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
    [Crossref]
  11. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
    [Crossref]
  12. N. F. Tyndall, T. H. Stievater, D. A. Kozak, K. Koo, R. A. McGill, M. W. Pruessner, W. S. Rabinovich, and S. A. Holmstrom, “Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants,” Opt. Lett. 43, 4803–4806 (2018).
    [Crossref]
  13. A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
    [Crossref]
  14. D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
    [Crossref]
  15. A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27, 23067 (2019).
    [Crossref]
  16. D. Kita, J. Michon, and J. Hu, “A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor,” Opt. Express 28, 14963–14972 (2020).
    [Crossref]
  17. A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
    [Crossref]
  18. S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. McGill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3, 891–896 (2016).
    [Crossref]
  19. H. Zhao, B. Baumgartner, A. Raza, A. Skirtach, B. Lendl, and R. Baets, “Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer,” Opt. Lett. 45, 447–450 (2020).
    [Crossref]
  20. T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
    [Crossref]
  21. T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
    [Crossref]
  22. B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
    [Crossref]
  23. G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
    [Crossref]
  24. G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
    [Crossref]
  25. W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
    [Crossref]
  26. R. L. Green and C. D. Brown, “Raw-material authentication using a handheld Raman spectrometer,” Pharm. Technol. 32, 148–162 (2008).
  27. P. Matousek and M. D. Morris, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010).
  28. M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
    [Crossref]
  29. A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
    [Crossref]
  30. A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.
  31. G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.
  32. V. K. Ramshesh and J. J. Lemasters, “Pinhole shifting lifetime imaging microscopy,” J. Biomed. Opt. 13, 064001 (2008).
    [Crossref]
  33. N. Everall, “Depth profiling with confocal Raman microscopy, part I,” Spectroscopy 19, 22–28 (2004).
  34. N. Everall, “Depth profiling with confocal Raman microscopy, part II,” Spectroscopy 19, 16–27 (2004).
  35. Y. Maruyama and W. Kanematsu, “Confocal volume in laser Raman microscopy depth profiling,” J. Appl. Phys. 110, 103107 (2011).
    [Crossref]
  36. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
    [Crossref]
  37. P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
    [Crossref]
  38. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Elsevier/Academic, 1996).
  39. N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
    [Crossref]
  40. W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
    [Crossref]
  41. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [Crossref]
  42. R. Pilot and R. Bozio, “Validation of SERS enhancement factor measurements,” J. Raman Spectrosc. 49, 462–471 (2018).
    [Crossref]
  43. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy : From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  44. J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
    [Crossref]
  45. Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
    [Crossref]
  46. H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
    [Crossref]
  47. C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
    [Crossref]
  48. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2009).
  49. Y. Zhang and H. Gross, “Systematic design of microscope objectives. Part I: system review and analysis,” Adv. Opt. Technol. 8, 313–347 (2019).
    [Crossref]
  50. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [Crossref]
  51. L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
    [Crossref]
  52. A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
    [Crossref]
  53. O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
    [Crossref]
  54. P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
    [Crossref]
  55. C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
    [Crossref]
  56. D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5, 1046–1054 (2018).
    [Crossref]
  57. P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
    [Crossref]
  58. M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
    [Crossref]
  59. J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
    [Crossref]
  60. M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972).
    [Crossref]
  61. A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
    [Crossref]
  62. P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
    [Crossref]
  63. A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
    [Crossref]
  64. A. Bray, R. Chapman, and T. Plakhotnik, “Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water,” Appl. Opt. 52, 2503–2510 (2013).
    [Crossref]
  65. X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.
  66. J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.
  67. N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
    [Crossref]
  68. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162, 39–64 (1997).
    [Crossref]
  69. J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
    [Crossref]
  70. C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
    [Crossref]
  71. C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36, 1287–1289 (2011).
    [Crossref]
  72. C. H. Betters, S. G. Leon-Saval, J. G. Robertson, and J. Bland-Hawthorn, “Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam,” Opt. Express 21, 26103–26112 (2013).
    [Crossref]
  73. “Avantes AvaSpec-HERO datasheet,” https://www.avantes.com/products/spectrometers/sensline/item/1103-avaspec-hsc1024x58tec-evo .
  74. “B&W Tek Glacier X datasheet,” https://bwtek.com/products/glacier-x/ .
  75. “Ocean Insight QE Pro Raman Series datasheet,” https://www.oceaninsight.com/products/spectrometers/raman/qepro-raman-series/ .
  76. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2006).
  77. E. Ye, A. H. Atabaki, N. Han, and R. J. Ram, “Miniature, sub-nanometer resolution Talbot spectrometer,” Opt. Lett. 41, 2434–2437 (2016).
    [Crossref]
  78. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Elsevier, 1979).

2020 (2)

2019 (8)

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27, 23067 (2019).
[Crossref]

Y. Zhang and H. Gross, “Systematic design of microscope objectives. Part I: system review and analysis,” Adv. Opt. Technol. 8, 313–347 (2019).
[Crossref]

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
[Crossref]

2018 (9)

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5, 1046–1054 (2018).
[Crossref]

R. Pilot and R. Bozio, “Validation of SERS enhancement factor measurements,” J. Raman Spectrosc. 49, 462–471 (2018).
[Crossref]

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

N. F. Tyndall, T. H. Stievater, D. A. Kozak, K. Koo, R. A. McGill, M. W. Pruessner, W. S. Rabinovich, and S. A. Holmstrom, “Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants,” Opt. Lett. 43, 4803–4806 (2018).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 52 and 66  µm wavelengths using Ge-rich SiGe waveguides [Invited],” Opt. Mater. Express 8, 1305 (2018).
[Crossref]

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

2017 (3)

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

2016 (6)

E. Ye, A. H. Atabaki, N. Han, and R. J. Ram, “Miniature, sub-nanometer resolution Talbot spectrometer,” Opt. Lett. 41, 2434–2437 (2016).
[Crossref]

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. McGill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3, 891–896 (2016).
[Crossref]

2015 (4)

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
[Crossref]

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

2014 (3)

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

2013 (4)

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

C. H. Betters, S. G. Leon-Saval, J. G. Robertson, and J. Bland-Hawthorn, “Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam,” Opt. Express 21, 26103–26112 (2013).
[Crossref]

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

A. Bray, R. Chapman, and T. Plakhotnik, “Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water,” Appl. Opt. 52, 2503–2510 (2013).
[Crossref]

2012 (1)

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

2011 (2)

C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36, 1287–1289 (2011).
[Crossref]

Y. Maruyama and W. Kanematsu, “Confocal volume in laser Raman microscopy depth profiling,” J. Appl. Phys. 110, 103107 (2011).
[Crossref]

2009 (3)

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032 (2009).
[Crossref]

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

2008 (4)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

V. K. Ramshesh and J. J. Lemasters, “Pinhole shifting lifetime imaging microscopy,” J. Biomed. Opt. 13, 064001 (2008).
[Crossref]

R. L. Green and C. D. Brown, “Raw-material authentication using a handheld Raman spectrometer,” Pharm. Technol. 32, 148–162 (2008).

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

2007 (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

2006 (4)

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
[Crossref]

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93 (2006).
[Crossref]

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

2005 (1)

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

2004 (2)

N. Everall, “Depth profiling with confocal Raman microscopy, part I,” Spectroscopy 19, 22–28 (2004).

N. Everall, “Depth profiling with confocal Raman microscopy, part II,” Spectroscopy 19, 16–27 (2004).

2003 (1)

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

2000 (1)

1998 (2)

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

1997 (1)

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162, 39–64 (1997).
[Crossref]

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29, 37–50 (1995).
[Crossref]

1983 (1)

1972 (1)

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972).
[Crossref]

Aasen, H.

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

Agarwal, A.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032 (2009).
[Crossref]

Ahluwalia, B. S.

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

Alexander, D. R.

Almajaan, A.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Andrews, D.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

Andrews, G. P.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Artundo, I.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Artur, C.

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

Atabaki, A. H.

Baets, R.

H. Zhao, B. Baumgartner, A. Raza, A. Skirtach, B. Lendl, and R. Baets, “Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer,” Opt. Lett. 45, 447–450 (2020).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27, 23067 (2019).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Baeyens, W. R.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

Ballabio, A.

Banos, R.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Baños, R.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

Baron, D.

G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.

Barone, P. W.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Baumgartner, B.

Bellot-Gurlet, L.

G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.

Bernacki, B. E.

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

Betters, C. H.

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Blake, T. A.

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

Bland-Hawthorn, J.

Bloomfield, M.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

Blumenthal, D. J.

Bodson, C.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Borbás, E.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Bouville, D.

Bozio, R.

R. Pilot and R. Bozio, “Validation of SERS enhancement factor measurements,” J. Raman Spectrosc. 49, 462–471 (2018).
[Crossref]

Bramhavar, S.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Bray, A.

Brooke, M. A.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Brown, C. D.

R. L. Green and C. D. Brown, “Raw-material authentication using a handheld Raman spectrometer,” Pharm. Technol. 32, 148–162 (2008).

Bru, L. A.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Burggraeve, A.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Burton, J. C.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Cabanes, G. M.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Cai, W. B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Cai, X. W.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Camerlingo, C.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Canzoneri, M.

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

Cennamo, G.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Chapman, R.

Cheben, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Chen, L. C.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Cheng, L.

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

Cheng, S.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Chevallier, O.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Chiaverini, J.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Chrastina, D.

Christesen, S. D.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Clemmen, S.

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27, 23067 (2019).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Colles, M. J.

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972).
[Crossref]

Colomban, P.

G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.

Corset, J.

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Elsevier/Academic, 1996).

Coucheron, D. A.

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

Dada, O. O.

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

De Beer, T. R.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

de Goede, M.

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2006).

Dejaegher, B.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Del Prete, S.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Delâge, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Delattre, L.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Démuth, B.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Dendooven, J.

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Densmore, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Detavernier, C.

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Dhakal, A.

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Dhar, S.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Djorovic, A.

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

Domenech, J. D.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Doménech, D.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

Dominguez, C.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Domínguez, C.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

Edwards, H. G. M.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy : From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Elliot, C.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Emmons, E. D.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Etchegoint, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Everall, N.

N. Everall, “Depth profiling with confocal Raman microscopy, part I,” Spectroscopy 19, 22–28 (2004).

N. Everall, “Depth profiling with confocal Raman microscopy, part II,” Spectroscopy 19, 16–27 (2004).

Farha, O. K.

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

Farkas, A.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Feng, Z. C.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Ferguson, I. T.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Fernandez, J.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Fernández, J.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

Fountain, A. W.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Franzke, J.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
[Crossref]

Frigerio, J.

Fu, H. Y.

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

Galloway, C. M.

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

Garcia-Blanco, S. M.

Gargallo, B.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Geiselmann, M.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Geuzebroek, D.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Ghomi, M.

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

Gilvary, G. C.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Glucksberg, M. R.

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

Goh, S.

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

Gouadec, G.

G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.

Goyvaerts, J.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Grand, J.

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

Green, R. L.

R. L. Green and C. D. Brown, “Raw-material authentication using a handheld Raman spectrometer,” Pharm. Technol. 32, 148–162 (2008).

Greeneltch, N. G.

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

Greivenkamp, J. E.

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2009).

Griffiths, J. E.

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2006).

Gross, H.

Y. Zhang and H. Gross, “Systematic design of microscope objectives. Part I: system review and analysis,” Adv. Opt. Technol. 8, 313–347 (2019).
[Crossref]

Guicheteau, J. A.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Gyürkés, M.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Han, M.

Han, N.

Han, Z.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Hancock, W.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Harima, H.

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162, 39–64 (1997).
[Crossref]

Harwit, M.

M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Elsevier, 1979).

Hauer, P.

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

He, X.

Healy, A. M.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Herrington, W. F.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Heyden, Y. V.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Hinojosa, A.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Hoekstra, H. J.

Holmstrom, S. A.

Honkavaara, E.

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

Hsieh, W. F.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Hsu, C. H.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Hsu, H. C.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Hu, J.

Hupp, J. T.

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

Isella, G.

Jacobs, K. T.

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

Janasek, D.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
[Crossref]

Jans, H.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Jans, K.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

Janz, S.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Jo, J. A.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Johnson, S. G.

Johnson, T. J.

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

Jokerst, N. M.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Jones, D. S.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Jouanne, M.

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

Jüngst, N.

N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
[Crossref]

Juodawlkis, P. W.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Kanematsu, W.

Y. Maruyama and W. Kanematsu, “Confocal volume in laser Raman microscopy depth profiling,” J. Appl. Phys. 110, 103107 (2011).
[Crossref]

Kelleher, J. F.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Kelly, J. F.

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

Kharas, D.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Khurgin, J. B.

Kiefer, J.

N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
[Crossref]

Kimerling, L.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Kimerling, L. C.

Kita, D.

Kita, D. M.

Kniggendorf, A. K.

A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
[Crossref]

Komaromy-Hiller, S.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Koo, K.

Kozak, D. A.

Kreno, L. E.

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

Kuo, C. C.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Lafait, J.

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

Lambeck, P. V.

Lamontagne, B.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lapointe, J.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Le Roux, X.

Le Ru, E. C.

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Le Thomas, N.

Lehmann, K. K.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Leinse, A.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Lemasters, J. J.

V. K. Ramshesh and J. J. Lemasters, “Pinhole shifting lifetime imaging microscopy,” J. Biomed. Opt. 13, 064001 (2008).
[Crossref]

Lemos, A.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Lendl, B.

Leon-Saval, S. G.

Lepore, M.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Lewis, I. R.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy : From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Li, S.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Li, X. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Lin, P.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Lisitskiy, M.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Liu, C.

Liu, F. M.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Liu, Q.

Liu, W. R.

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

Loeffen, P.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

Loh, W.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Long, F. H.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Lu, Y.

Luan, L.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Lucieer, A.

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

Lukacs, S. J.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29, 37–50 (1995).
[Crossref]

Lyandres, O.

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

Madi, A. M.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Manz, A.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
[Crossref]

Marosi, G.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Marris-Morini, D.

Maruyama, Y.

Y. Maruyama and W. Kanematsu, “Confocal volume in laser Raman microscopy depth profiling,” J. Appl. Phys. 110, 103107 (2011).
[Crossref]

Matousek, P.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

P. Matousek and M. D. Morris, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010).

McGill, R. A.

Meng, Z.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Michon, J.

Montorio, D.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Morhange, J. F.

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

Morris, M. D.

P. Matousek and M. D. Morris, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010).

Moskovits, M.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Mu, X.

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

Muneeb, M.

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Munoz, P.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Muñoz, P.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

Murugan, G. S.

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

Nagy, B.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Nagy, Z. K.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Nakashima, S.

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162, 39–64 (1997).
[Crossref]

Negri, P.

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

Nusser, D.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Ouyang, J.

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

Palit, S.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Parriaux, O.

Pastor, D.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Paudel, A.

A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
[Crossref]

Petrov, G. I.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Peyskens, F.

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Pilot, R.

R. Pilot and R. Bozio, “Validation of SERS enhancement factor measurements,” J. Raman Spectrosc. 49, 462–471 (2018).
[Crossref]

Plakhotnik, T.

Pophristic, M.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Porcel, M. A.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Portaccio, M.

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

Post, E.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Pruessner, M. W.

Rabinovich, W. S.

Raijada, D.

A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
[Crossref]

Ram, R. J.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

E. Ye, A. H. Atabaki, N. Han, and R. J. Ram, “Miniature, sub-nanometer resolution Talbot spectrometer,” Opt. Lett. 41, 2434–2437 (2016).
[Crossref]

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

Ramirez, J. M.

Raml, C.

Ramos, C. A.

Ramshesh, V. K.

V. K. Ramshesh and J. J. Lemasters, “Pinhole shifting lifetime imaging microscopy,” J. Biomed. Opt. 13, 064001 (2008).
[Crossref]

Rantanen, J.

A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
[Crossref]

Raza, A.

Remon, J. P.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

Ren, B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Richardson, K.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Robertson, J. G.

Roeloffzen, C. G.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Roth, B.

A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
[Crossref]

Royal, M.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Sage, J.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Schmid, J. H.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Schultz, Z. D.

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

Scully, M. O.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Self, S. A.

Senta-Loys, Z.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

She, C. X.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Singh, G. P.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

Singh, V.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Skirtach, A.

H. Zhao, B. Baumgartner, A. Raza, A. Skirtach, B. Lendl, and R. Baets, “Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer,” Opt. Lett. 45, 447–450 (2020).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Skirtach, A. G.

Sloane, N. J. A.

M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Elsevier, 1979).

So, P. T.

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

Sorace-Agaskar, C.

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Stassen, A.

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Stievater, T. H.

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Subramanian, A.

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Subramanian, A. Z.

Sun, L.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

Sun, X.

Suntivich, J.

Szabó, B.

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

Tan, D. T.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Thomas, N. L.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

Tian, Y.

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Tian, Z. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Tombling, C.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

Tong, A. S. K.

Tripathi, A.

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

Tu, X.

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

Turrell, G.

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Elsevier/Academic, 1996).

Tyler, T.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Tyndall, N.

Tyndall, N. F.

Vakarin, V.

Vallée, P.

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

Van Daele, M.

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Van Dijk, P. W.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Van Duyne, R. P.

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

Veldhuis, G. J.

Vercruysse, P.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Vervaet, C.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

Vivien, L.

Wadduwage, D. N.

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

Walczak, B.

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

Waldron, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Walsh, J. T.

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

Wetzel, C.

A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
[Crossref]

Wilkinson, J. S.

Williamson, A. P.

N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
[Crossref]

Willmott, G. R.

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

Wu, D.

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Wu, S.

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

Wuytens, P.

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27, 23067 (2019).
[Crossref]

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

Wuytens, P. C.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

Xu, D. X.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Yakovlev, V. V.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Ye, E.

Yonzon, C. R.

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

York, T.

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

Zarco-Tejada, P. J.

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

Zervas, M.

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

Zhang, Y.

Y. Zhang and H. Gross, “Systematic design of microscope objectives. Part I: system review and analysis,” Adv. Opt. Technol. 8, 313–347 (2019).
[Crossref]

Zhao, H.

ACS Nano (1)

A. Tripathi, E. D. Emmons, A. W. Fountain, J. A. Guicheteau, M. Moskovits, and S. D. Christesen, “Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement,” ACS Nano 9, 584–593 (2015).
[Crossref]

ACS Photon. (2)

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photon. 3, 2141–2149 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Adv. Drug Delivery Rev. (1)

A. Paudel, D. Raijada, and J. Rantanen, “Raman spectroscopy in pharmaceutical product design,” Adv. Drug Delivery Rev. 89, 3–20 (2015).
[Crossref]

Adv. Opt. Technol. (1)

Y. Zhang and H. Gross, “Systematic design of microscope objectives. Part I: system review and analysis,” Adv. Opt. Technol. 8, 313–347 (2019).
[Crossref]

Anal. Chem. (2)

O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem. 77, 6134–6139 (2005).
[Crossref]

P. Negri, K. T. Jacobs, O. O. Dada, and Z. D. Schultz, “Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing,” Anal. Chem. 85, 10159–10166 (2013).
[Crossref]

Analyst (2)

L. E. Kreno, N. G. Greeneltch, O. K. Farha, J. T. Hupp, and R. P. Van Duyne, “SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy,” Analyst 139, 4073–4080 (2014).
[Crossref]

T. R. De Beer, W. R. Baeyens, J. Ouyang, C. Vervaet, and J. P. Remon, “Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension,” Analyst 131, 1137–1144 (2006).
[Crossref]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

APL Photon. (1)

A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, “ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy,” APL Photon. 3, 116105 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

N. Jüngst, A. P. Williamson, and J. Kiefer, “Numerical model for predicting experimental effects in enantioselective Raman spectroscopy,” Appl. Phys. B 123, 1–15 (2017).
[Crossref]

Appl. Phys. Lett. (2)

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

C. C. Kuo, W. R. Liu, W. F. Hsieh, C. H. Hsu, H. C. Hsu, and L. C. Chen, “Crystal symmetry breaking of wurtzite to orthorhombic in nonpolar a-ZnO epifilms,” Appl. Phys. Lett. 95, 011905 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Munoz, P. W. Van Dijk, D. Geuzebroek, M. Geiselmann, C. Dominguez, A. Stassen, J. D. Domenech, M. Zervas, A. Leinse, C. G. Roeloffzen, B. Gargallo, R. Banos, J. Fernandez, G. M. Cabanes, L. A. Bru, and D. Pastor, “Foundry developments toward silicon nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

D. A. Coucheron, D. N. Wadduwage, G. S. Murugan, P. T. So, and B. S. Ahluwalia, “Chip-based resonance Raman spectroscopy using tantalum pentoxide waveguides,” IEEE Photon. Technol. Lett. 31, 1127–1130 (2019).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. A. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Int. J. Pharm. (2)

B. Nagy, A. Farkas, M. Gyürkés, S. Komaromy-Hiller, B. Démuth, B. Szabó, D. Nusser, E. Borbás, G. Marosi, and Z. K. Nagy, “In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process,” Int. J. Pharm. 530, 21–29 (2017).
[Crossref]

G. P. Andrews, D. S. Jones, Z. Senta-Loys, A. Almajaan, S. Li, O. Chevallier, C. Elliot, A. M. Healy, J. F. Kelleher, A. M. Madi, G. C. Gilvary, and Y. Tian, “The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products,” Int. J. Pharm. 566, 476–487 (2019).
[Crossref]

Int. J. Spectrosc. (1)

J. F. Kelly, T. A. Blake, B. E. Bernacki, and T. J. Johnson, “Design considerations for a portable Raman probe spectrometer for field forensics,” Int. J. Spectrosc. 2012, 1–15 (2012).
[Crossref]

J. Appl. Phys. (2)

Y. Maruyama and W. Kanematsu, “Confocal volume in laser Raman microscopy depth profiling,” J. Appl. Phys. 110, 103107 (2011).
[Crossref]

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84, 6268–6273 (1998).
[Crossref]

J. Biomed. Opt. (1)

V. K. Ramshesh and J. J. Lemasters, “Pinhole shifting lifetime imaging microscopy,” J. Biomed. Opt. 13, 064001 (2008).
[Crossref]

J. Chem. Phys. (1)

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Pharm. Biomed. Anal. (2)

M. Bloomfield, D. Andrews, P. Loeffen, C. Tombling, T. York, and P. Matousek, “Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy,” J. Pharm. Biomed. Anal. 76, 65–69 (2013).
[Crossref]

T. R. De Beer, C. Bodson, B. Dejaegher, B. Walczak, P. Vercruysse, A. Burggraeve, A. Lemos, L. Delattre, Y. V. Heyden, J. P. Remon, C. Vervaet, and W. R. Baeyens, “Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process,” J. Pharm. Biomed. Anal. 48, 772–779 (2008).
[Crossref]

J. Phys. Chem. C (3)

P. Hauer, J. Grand, A. Djorovic, G. R. Willmott, and E. C. Le Ru, “Spot size engineering in microscope-based laser spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

C. M. Galloway, C. Artur, J. Grand, and E. C. Le Ru, “Photobleaching of fluorophores on the surface of nanoantennas,” J. Phys. Chem. C 118, 28820–28830 (2014).
[Crossref]

J. Raman Spectrosc. (2)

R. Pilot and R. Bozio, “Validation of SERS enhancement factor measurements,” J. Raman Spectrosc. 49, 462–471 (2018).
[Crossref]

G. P. Singh, S. Goh, M. Canzoneri, and R. J. Ram, “Raman spectroscopy of complex defined media: biopharmaceutical applications,” J. Raman Spectrosc. 46, 545–550 (2015).
[Crossref]

Materials (1)

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93 (2006).
[Crossref]

Nature (1)

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442, 374–380 (2006).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

M. A. Porcel, A. Hinojosa, H. Jans, A. Stassen, J. Goyvaerts, D. Geuzebroek, M. Geiselmann, C. Dominguez, and I. Artundo, “Silicon nitride photonic integration for visible light applications,” Opt. Laser Technol. 112, 299–306 (2019).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (3)

Pharm. Technol. (1)

R. L. Green and C. D. Brown, “Raw-material authentication using a handheld Raman spectrometer,” Pharm. Technol. 32, 148–162 (2008).

Phys. Status Solidi A (1)

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162, 39–64 (1997).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V. Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. USA 112, 12315–12320 (2015).
[Crossref]

Proc. SPIE (1)

J. Sage, S. Bramhavar, J. Chiaverini, P. W. Juodawlkis, D. Kharas, W. Loh, and C. Sorace-Agaskar, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Remote Sens. (1)

H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction work flows,” Remote Sens. 10, 1091 (2018).
[Crossref]

Sci. Rep. (1)

W. F. Herrington, G. P. Singh, D. Wu, P. W. Barone, W. Hancock, and R. J. Ram, “Optical detection of degraded therapeutic proteins,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Sens. Actuators B Chem. (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29, 37–50 (1995).
[Crossref]

Sensors (2)

C. Camerlingo, M. Lisitskiy, M. Lepore, M. Portaccio, D. Montorio, S. Del Prete, and G. Cennamo, “Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy,” Sensors 19, 1177 (2019).
[Crossref]

A. K. Kniggendorf, C. Wetzel, and B. Roth, “Microplastics detection in streaming tap water with Raman spectroscopy,” Sensors 19, 1839 (2019).
[Crossref]

Spectroscopy (2)

N. Everall, “Depth profiling with confocal Raman microscopy, part I,” Spectroscopy 19, 22–28 (2004).

N. Everall, “Depth profiling with confocal Raman microscopy, part II,” Spectroscopy 19, 16–27 (2004).

Surf. Sci. (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406, 9–22 (1998).
[Crossref]

Other (13)

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Elsevier/Academic, 1996).

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in International Conference on BioPhotonics (BioPhotonics) (IEEE, 2015), pp. 1–4.

G. Gouadec, L. Bellot-Gurlet, D. Baron, and P. Colomban, “Raman mapping for the investigation of nano-phased materials,” in Raman Imaging (Springer, 2012), pp. 85–118.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy : From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2009).

P. Matousek and M. D. Morris, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010).

X. Mu, S. Wu, L. Cheng, X. Tu, and H. Y. Fu, “High-performance silicon nitride fork-shape edge coupler,” in Frontiers in Optics (The Optical Society, 2019), paper JTu3A.66.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” in IET Optoelectronics (Institution of Engineering and Technology, 2019), vol. 13, pp. 62–66.

“Avantes AvaSpec-HERO datasheet,” https://www.avantes.com/products/spectrometers/sensline/item/1103-avaspec-hsc1024x58tec-evo .

“B&W Tek Glacier X datasheet,” https://bwtek.com/products/glacier-x/ .

“Ocean Insight QE Pro Raman Series datasheet,” https://www.oceaninsight.com/products/spectrometers/raman/qepro-raman-series/ .

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2006).

M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Elsevier, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of a model free-space Raman setup for calculation of the collection efficiency. Here a two-lens, forward- or backward-collection (diascopic or episcopic) system is illustrated, but our calculation applies to arbitrary excitation beam profiles and collection optics configurations.
Fig. 2.
Fig. 2. (a) Effective interaction length of a single-lens system as a function of beam center position (distance from the objective, on one side) and aperture position (distance from the objective, on the other side), for an objective with ${f_o} = 2\;{\rm mm} $ and ${\rm NA} = 0.9$ in air, and an input beam with ${w_0} = 2\,\,\unicode{x00B5}{\rm m}$ at $\lambda = 785\;{\rm nm} $. The black line corresponds to the position of the beam center image according to the thin lens formula. (b) Collection solid angle over the entire sensing region for the maximum of (a): ${z_0} = - 4\;{\rm mm} $ and ${z_a} = 4\;{\rm mm} $. The dashed white line shows the image of the aperture. (c) Effective interaction length of a single-lens system as a function of objective focal length and input beam waist. The beam center and aperture position were set at their optimal positions of ${z_0} = - 2{f_o}$ and ${z_a} = 2{f_o}$, and the objective diameter at 40 mm. The yellow cross indicates the parameters used for (a), (b), and the rest of the computations.
Fig. 3.
Fig. 3. (a) Effective interaction length ${l_{{\rm eff}}}$ and ratio $P/{P_{{\rm focal}}}$ (with ${P_{{\rm focal}}} = \int_{|z - {z_0}| \le {z_R}} {P_{{\rm slice}}}(z){\rm d}z$ the power collected from the focal volume) as a function of the tube lens focal length ${f_t}$. (b) Power collected per slice ${P_{{\rm slice}}}/\rho \sigma$ as a function of slice position (distance from the objective), for various ${f_t}$. The beam center position was set at ${z_0} = - {f_o}$ and the aperture at ${z_a} = {f_t}$.
Fig. 4.
Fig. 4. (a) Schematic of the simulated SERS setup. (b) $P/{P_{{\rm SERSlayer}}}$ as a function of the SERS EF and the SERS layer thickness.
Fig. 5.
Fig. 5. Ratio of WERS and free-space SNR, given by Eq. (10), for IPA in water at Raman shift of (a) $819 \,{{\rm cm}^{- 1}}$ and (b) $2882 \,{{\rm cm}^{- 1}}$. The isoline for ${\rm ratio} = {1}$ is highlighted in black. (c) Influence of the waveguide core material on the SNR of WERS, for IPA in water at $819\;{{\rm cm}^{- 1}}$.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z ) = I 0 1 + ζ 2 exp [ 2 r 2 w 0 2 ( 1 + ζ 2 ) ] ,
d P = ρ d V σ I ( x , y , z ) Ω ,
P = V s ρ σ I ( x , y , z ) Ω c o l l ( x , y , z ) d V ,
Θ ( x , y , z , θ , ϕ ) = { 1 if the ray is collected , 0 o t h e r w i s e .
Ω c o l l ( x , y , z ) = Θ ( x , y , z , θ , ϕ ) sin ( θ ) d θ d ϕ .
E ( x , y , z ) = { E S E R S f o r 0 z t S E R S , 1 o t h e r w i s e .
P w g o u t p u t , x = P w g i n p u t × 1 2 ρ x σ x η x 1 e 2 α l w g 2 α ,
S N R W E R S = γ W E R S P s o u r c e 1 e 2 α l w g 4 α × ρ a σ a η a ( ρ i σ i ) η a + ρ c σ c η c ,
S N R f s = P Raman, analyte of interest P Raman, all analytes = γ f s P s o u r c e l e f f ρ a σ a ( ρ i σ i ) ,
S N R W E R S S N R f s = γ W E R S γ f s 1 l e f f 1 e 2 α l w g 4 α × ρ a σ a η a ( ρ i σ i ) η a + ρ c σ c η c ( ρ i σ i ) ρ a σ a .

Metrics