Abstract

The tilted-pulse-front setup utilizing a diffraction grating is one of the most successful methods to generate single- to few-cycle terahertz pulses. However, the generated terahertz pulses have a large spatial inhomogeneity, due to the noncollinear phase-matching condition and the asymmetry of the prism-shaped nonlinear crystal geometry, especially when pushing for high optical-to-terahertz conversion efficiency. A ${\rm 3D} + 1$ (${x,y,z,t}$) numerical model is necessary in order to fully investigate the terahertz generation problem in the tilted-pulse-front scheme. We compare in detail the differences among ${\rm 1D} + 1$, ${\rm 2D} + 1$, and ${\rm 3D} + 1$ models. The simulations show that the size of the optical beam in the pulse-front-tilt plane sensitively affects the spatiotemporal properties of the terahertz electric field. The terahertz electric field is found to have a strong spatial dependence such that a few-cycle pulse is generated only near the apex of the prism. Even though the part of the beam farther from the apex can contain a large fraction of the energy, the terahertz waveform shows less few-cycle character. This strong spatial dependence must be accounted for when using the terahertz pulses for strong-field physics and carrier-envelope-phase sensitive experiments such as terahertz acceleration, coherent control of antiferromagnetic spin waves, and terahertz high-harmonic generation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals

Michael I. Bakunov, Sergey B. Bodrov, and Eugene A. Mashkovich
J. Opt. Soc. Am. B 28(7) 1724-1734 (2011)

Analysis of terahertz generation using tilted pulse fronts

Koustuban Ravi and Franz Kärtner
Opt. Express 27(3) 3496-3517 (2019)

Terahertz generation with tilted-front laser pulses in a contact-grating scheme

Michael I. Bakunov and Sergey B. Bodrov
J. Opt. Soc. Am. B 31(11) 2549-2557 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
    [Crossref]
  2. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
    [Crossref]
  3. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
    [Crossref]
  4. D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
    [Crossref]
  5. H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
    [Crossref]
  6. P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
    [Crossref]
  7. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
    [Crossref]
  8. V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
    [Crossref]
  9. V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
    [Crossref]
  10. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [Crossref]
  11. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).
    [Crossref]
  12. G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27, 7762–7775 (2019).
    [Crossref]
  13. M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
    [Crossref]
  14. M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28, 1724–1734 (2011).
    [Crossref]
  15. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23, 5253–5276 (2015).
    [Crossref]
  16. L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
    [Crossref]
  17. M. Feit and J. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [Crossref]
  18. J. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
    [Crossref]
  19. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
    [Crossref]
  20. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929–934 (1986).
    [Crossref]
  21. K. Ravi and F. Kärtner, “Analysis of terahertz generation using tilted pulse fronts,” Opt. Express 27, 3496–3517 (2019).
    [Crossref]
  22. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Quantum Electron. 5, 1–68 (1977).
    [Crossref]
  23. S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” technical report (Microwave Lab., Stanford University, 1970).
  24. K. Ravi, D. N. Schimpf, and F. X. Kärtner, “Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium,” Opt. Express 24, 25582–25607 (2016).
    [Crossref]
  25. J. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
    [Crossref]
  26. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
    [Crossref]
  27. C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
    [Crossref]
  28. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
    [Crossref]
  29. L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
    [Crossref]

2019 (2)

2018 (1)

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

2017 (2)

L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
[Crossref]

2016 (1)

2015 (3)

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23, 5253–5276 (2015).
[Crossref]

2014 (2)

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

2012 (3)

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

J. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

2011 (3)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28, 1724–1734 (2011).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

2010 (1)

2009 (1)

V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
[Crossref]

2008 (2)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref]

M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[Crossref]

2002 (2)

J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[Crossref]

A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
[Crossref]

1992 (1)

H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
[Crossref]

1988 (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[Crossref]

1986 (1)

1978 (1)

1977 (1)

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Quantum Electron. 5, 1–68 (1977).
[Crossref]

Almasi, G.

Almási, G.

Bakker, H.

H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
[Crossref]

Bakunov, M.

M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[Crossref]

Bakunov, M. I.

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Bodrov, S.

M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[Crossref]

Bodrov, S. B.

Bogdashov, A.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Bratman, V.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
[Crossref]

Calendron, A.-L.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Cankaya, H.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Carbajo, S.

Davies, A.

A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
[Crossref]

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Denisov, G.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Fakhari, M.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Fallahi, A.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Fan, M.

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Feit, M.

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Fleck, J.

Fülöp, J.

Fülöp, J. A.

Glyavin, M. Y.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref]

Golde, D.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Golubiatnikov, G. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref]

Hajdara, I.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

Hebling, J.

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27, 7762–7775 (2019).
[Crossref]

L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
[Crossref]

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).
[Crossref]

J. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

J. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[Crossref]

J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[Crossref]

Hellwarth, R.

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Quantum Electron. 5, 1–68 (1977).
[Crossref]

Hemmer, M.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Hohenleutner, M.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Hua, Y.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Huang, J.

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Huang, W. R.

Huber, R.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Hunsche, S.

H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
[Crossref]

Huttner, U.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Ippen, E. P.

Johnston, M. B.

A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
[Crossref]

Kalynov, Y. K.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
[Crossref]

Kampfrath, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Karsch, S.

Kärtner, F.

Kärtner, F. X.

Kira, M.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Klingebiel, S.

Koch, S. W.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Kozma, I. Z.

Krausz, F.

Krizsán, G.

Kuhl, J.

Kurz, H.

H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
[Crossref]

Lange, C.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Langer, F.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Linfield, E. H.

A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
[Crossref]

Liu, K.

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Lombosi, C.

Luchinin, A.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref]

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Manuilov, V.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
[Crossref]

Martinez, O. E.

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[Crossref]

O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929–934 (1986).
[Crossref]

Márton, Z.

Mashkovich, E. A.

Matlis, N. H.

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27, 7762–7775 (2019).
[Crossref]

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Mechler, M.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
[Crossref]

Meier, T.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Nanni, E. A.

Ollmann, Z.

Pálfalvi, L.

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27, 7762–7775 (2019).
[Crossref]

L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).
[Crossref]

J. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557–559 (2012).
[Crossref]

J. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[Crossref]

Pashkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Polónyi, G.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
[Crossref]

Ravi, K.

Schimpf, D. N.

Schubert, O.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Skrobol, C.

Sussman, S. S.

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” technical report (Microwave Lab., Stanford University, 1970).

Szaller, Z.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

Tan, P.

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Tokodi, L.

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
[Crossref]

L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
[Crossref]

Tóth, G.

Tsarev, M.

M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[Crossref]

Unferdorben, M.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

Urbanek, B.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

Wu, X.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Xiong, Y.

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Zapata, L. E.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Zapevalov, V.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Zavolsky, N.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Zhang, D.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

Zorin, V.

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[Crossref]

J. Appl. Phys. (1)

M. Bakunov, S. Bodrov, and M. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[Crossref]

J. Infrared Millim. Terahertz Waves (3)

L. Tokodi, J. Hebling, and L. Pálfalvi, “Optimization of the tilted-pulse-front terahertz excitation setup containing telescope,” J. Infrared Millim. Terahertz Waves 38, 22–32 (2017).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,”J. Infrared Millim. Terahertz Waves 36, 1203–1209 (2015).
[Crossref]

V. Bratman, A. Bogdashov, G. Denisov, M. Y. Glyavin, Y. K. Kalynov, A. Luchinin, V. Manuilov, V. Zapevalov, N. Zavolsky, and V. Zorin, “Gyrotron development for high power THz technologies at IAP RAS,” J. Infrared Millim. Terahertz Waves 33, 715–723 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical,” Nat. Photonics 8, 119–123 (2014).
[Crossref]

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12, 336–342 (2018).
[Crossref]

New J. Phys. (1)

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17, 083041 (2015).
[Crossref]

Opt. Express (8)

J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[Crossref]

J. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23, 5253–5276 (2015).
[Crossref]

K. Ravi, D. N. Schimpf, and F. X. Kärtner, “Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium,” Opt. Express 24, 25582–25607 (2016).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25, 29560–29573 (2017).
[Crossref]

K. Ravi and F. Kärtner, “Analysis of terahertz generation using tilted pulse fronts,” Opt. Express 27, 3496–3517 (2019).
[Crossref]

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27, 7762–7775 (2019).
[Crossref]

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679–3689 (2002).
[Crossref]

Phys. Rev. Lett. (3)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref]

V. Bratman, Y. K. Kalynov, and V. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett. 102, 245101 (2009).
[Crossref]

H. Bakker, S. Hunsche, and H. Kurz, “Observation of THz phonon-polariton beats in LiTaO3,” Phys. Rev. Lett. 69, 2823 (1992).
[Crossref]

Quantum Electron. (1)

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Quantum Electron. 5, 1–68 (1977).
[Crossref]

Sci. China Inf. Sci. (1)

P. Tan, J. Huang, K. Liu, Y. Xiong, and M. Fan, “Terahertz radiation sources based on free electron lasers and their applications,” Sci. China Inf. Sci. 55, 1–15 (2012).
[Crossref]

Other (1)

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” technical report (Microwave Lab., Stanford University, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of the simulated tilted-pulse-front setup. The optical pump pulse is noted by OP, and the $ {{\rm LiNbO}_3} $ crystal is represented by LN. The OP propagates along the $ {z^\prime} $ direction. The $ x - y - z $ coordinates denote the pulse-front-tilt frame (terahertz frame) inside the LN crystal. The $ y $ and $ {y^\prime} $ axes are equivalent. The optical system is chosen such that the image of the grating is parallel to the pulse-front-tilt inside the LN [18].
Fig. 2.
Fig. 2. Comparison of the results obtained from ${\rm 1D} + 1$, ${\rm 2D} + 1$, and ${\rm 3D} + 1$ simulations. (a), (b), and (c) are the output OP spectra, the output terahertz spectra, and the efficiencies, respectively. The solid curves correspond to the results generated by OP with $ \sigma _x^\prime = 0.44\;{\rm mm} $. The dashed curves in (c) represent the results generated by OP with $ \sigma _x^\prime = 1.32\;{\rm mm} $. (a) and (b) are plotted at the location of maximum efficiency [marked by the vertical gray lines in (c)].
Fig. 3.
Fig. 3. With the input pump fluence $ 70.7\;{\rm mJ}/{{\rm cm}^2} $ (blue dots) and $ 35.3\;{\rm mJ}/{{\rm cm}^2} $ (orange dots), the maximum terahertz generation efficiencies versus the OP beam size $ {\sigma _{{x^\prime}}} $, calculated by the 2D model, are presented. The black circles indicate three beam sizes chosen as examples in the following ${\rm 3D} + 1$ calculations.
Fig. 4.
Fig. 4. Spatial dependence of the generated terahertz beams along $ x $ and $ y $ dimensions. (a–c) and (d–f) represent the OP and the terahertz beam profiles at the output surface of the LN crystal, respectively. (g–i) and (j–l) represent the OP and terahertz fluence, respectively, at a given position $ y = 0 $ (black curve) and $ y = {\sigma _y}/\sqrt 2 = 2.47 $ (red curve). The OP beam sizes at the input LN-crystal surface are $ \sigma _x^\prime = 0.44\;{\rm mm} $, 0.88 mm, and 1.32 mm in the $ {x^\prime} - {y^\prime} - {z^\prime} $ frame, respectively. The center position of the OP beam is marked by the dashed line. The OP beam size in the $ y $ dimension is chosen to be $ {\sigma _y} = 3.5\;{\rm mm} $. The apex of the LN crystal is located at $ x = 0 $.
Fig. 5.
Fig. 5. Spatial dependence of the generated terahertz spectra and temporal profiles along the $ x $ dimension. (a–c) and (d–f) are the terahertz electric field and the corresponding terahertz spectra with respect to $ x $ at $ y = 0 $. (g–i) and (j–l) show the terahertz electric field and the corresponding terahertz spectra with respect to $ x $ at $ y = {\sigma _y}/\sqrt 2 $.
Fig. 6.
Fig. 6. Example shown is for $ \sigma _x^\prime = 1.32 \;{\rm mm} $, where the non-single-cycle region, $ \Delta t(x,y) \gt 2\Delta t({x_p},{y_p}) $, is indicated by the gray region. The terahertz beam under the gray region contains up to 25% of the total terahertz energy.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ d θ 2 d ω = 2 π c ω 2 d cos ( θ 2 ) d 2 θ 2 d 2 ω = 4 π c ω 3 d cos ( θ 2 ) 2 π c sin ( θ 2 ) ω 2 d cos 2 ( θ 2 ) d θ 2 d ω .
Δ θ 2 = d θ 2 d ω | ω = ω 0 ( ω ω 0 ) + 1 2 d 2 θ 2 d 2 ω | ω = ω 0 ( ω ω 0 ) 2 = F 1 ( ω ω 0 ) + [ F 1 / ω 0 + 1 2 F 1 2 tan ( θ 02 ) ] ( ω ω 0 ) 2 = F 1 ( ω ω 0 ) + F 2 ( ω ω 0 ) 2 .
E ( ω , x , y , z ) = A 0 exp [ ( ω ω 0 ) 2 τ 2 / 4 ] exp [ x 2 / ( 2 σ x 2 ) ] × exp [ y 2 / ( 2 σ y 2 ) ] exp [ i ω n ( ω ) z / c ] × exp [ i Δ θ 2 f 1 ω 0 x / ( c f 2 ) ] .
P N L ( 2 ) ( Ω , x , y , z ) = χ ( 2 ) Ω 2 c 2 0 E ( ω + Ω , x , y , z ) E ( ω , x , y , z ) d ω × exp { i Ω n ( Ω ) [ cos ( γ ) z + sin ( γ ) x ] / c } = χ ( 2 ) Ω 2 2 π τ c 2 A 0 2 exp ( x 2 σ x 2 ) exp ( y 2 σ y 2 ) × exp ( Ω 2 τ 2 8 { 1 + 16 x 2 n g 2 tan ( γ ) 2 τ 4 c 2 ( F 2 F 1 ) 2 } ) × exp { i Ω c [ n g n ( Ω ) cos ( γ ) ] z } × exp { i [ f 1 ω 0 f 2 F 1 + n ( Ω ) sin ( γ ) ] Ω c x } .
{ Δ k z = Ω c [ n g n ( Ω ) cos ( γ ) ] = 0 n g / n ( Ω ) = cos ( γ ) Δ k x = [ f 1 ω 0 f 2 F 1 + n ( Ω ) sin ( γ ) ] Ω c = 0 2 π c f 1 d cos ( θ 2 ) ω 0 n g f 2 = tan ( γ ) .
2 i k 0 ( Ω ) E ( Ω , x , y , z ) z = [ 2 y 2 n e g l e c t e d b y 2 D + 1 + 2 x 2 n e g l e c t e d b y 1 D + 1 i α k 0 ( Ω ) ] E ( Ω , x , y , z ) Ω 2 χ ( 2 ) c 2 0 E ( ω + Ω , x , y , z ) × E ( ω , x , y , z ) e i ( Δ k z z + Δ k x x ) d ω ,
2 i k z 0 ( ω ) E ( ω , x , y , z ) z = [ 2 y 2 n e g l e c t e d b y 2 D + 1 + 2 x 2 2 i k x 0 ( ω ) x n e g l e c t e d b y 1 D + 1 ] E ( ω , x , y , z ) ε 0 n 2 ( ω 0 ) ω 2 c F { E o p ( t , x , y , z ) n 2 ( τ ) × E o p 2 ( t τ , x , y , z ) d τ E o p ( t , x , y , z ) n 2 ( τ ) } e i [ k z 0 ( ω ) z + k x 0 ( ω ) x ] ω 2 χ ( 2 ) c 2 E ( ω + Ω , x , y , z ) × E ( Ω , x , y , z ) e i ( Δ k z z + Δ k x x ) d Ω .
Δ t ( x , y ) = [ δ t ( x , y ) ] 2 I ( t , x , y ) d t I ( t , x , y ) d t [ δ t ( x , y ) I ( t , x , y ) d t I ( t , x , y ) d t ] 2 .

Metrics