Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Entanglement dynamics of moving qubits in a common environment

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we provide an analytical investigation of the entanglement dynamics of moving qubits dissipating into a common and (in general) non-Markovian environment for both weak and strong coupling regimes. We first consider the case of two moving qubits in a common environment and then generalize it to an arbitrary number of moving qubits. Our results show that when the system evolves from an initial entangled state, the amount of initial entanglement decreases and finally disappears after a finite interval of time due to the environmental effects. Moreover, we observe that the movement of qubits has a constructive role in the protection of the initial entanglement. In a sense, in this case, we observe a Zeno-like effect due to the velocity of qubits. On the other hand, we demonstrate how a stationary state of entanglement may be achieved when we consider the case in which at least one of the moving qubits is initially in the ground state. Surprisingly, we observe that when we extend the number of moving qubits with the same velocity, the stationary state of the qubits does not depend on the velocity of qubits as well as on the environmental properties. This means that, in this condition, the stationary state of entanglement depends only on the number of moving qubits.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.