Abstract

We report an ultrabroadband supercontinuum (SC) generation with high coherence property in all-normal-dispersion (ANDi) Te-based chalcogenide all-solid microstructured optical fiber (AS-MOF). The fiber was fabricated using a rod-in-tube method that presents four ${{\rm As}_2}{{\rm S}_3}$ glass rods selected as low refractive index material ($n = {2.4}$) embedded in a ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}}$ glass matrix ($n = {3.1}$). The highly symmetrical four-hole MOF preform was fabricated through the computerized numerical control precision mechanical drilling method. By engineering the structure of the fiber, we determined an ANDi characteristic in the range of 2–13.5 µm when the core diameter of the fiber was $ \le\!{10\,\,\unicode{x00B5}{\rm m}}$. Under pumping at 5 µm, a highly coherent SC generation in the range of 2–13.2 µm was generated in a 16-cm-long AS-MOF with core diameter of 9.8 µm.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion

Nan Zhang, Xuefeng Peng, Yingying Wang, Shixun Dai, Yuan Yuan, Jingxiang Su, Guangtao Li, Peiqing Zhang, Peilong Yang, and Xunsi Wang
Opt. Express 27(7) 10311-10319 (2019)

Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation

Yu Li, Longfei Wang, Meisong Liao, YinYao Liu, Xia Li, Wanjun Bi, Fei Yu, Long Zhang, Yiguang Jiang, Zaiyang Wang, Longfei Zhang, Chengfeng Yuan, and Lili Hu
J. Opt. Soc. Am. B 36(11) 2972-2980 (2019)

Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion

Lai Liu, Tonglei Cheng, Kenshiro Nagasaka, Hoangtuan Tong, Guanshi Qin, Takenobu Suzuki, and Yasutake Ohishi
Opt. Lett. 41(2) 392-395 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).
    [Crossref]
  2. S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [Crossref]
  3. T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
    [Crossref]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  5. C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).
  6. Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
    [Crossref]
  7. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37, 2127–2129 (2012).
    [Crossref]
  8. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref]
  9. N. Zhang, X. F. Peng, Y. Y. Wang, S. X. Dai, Y. Yuan, J. X. Su, G. T. Li, P. Q. Zhang, P. L. Yang, and X. S. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27, 10311–10319 (2019).
    [Crossref]
  10. U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
    [Crossref]
  11. W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref]
  12. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [Crossref]
  13. J. Cimek, N. Liaros, S. Couris, R. Stepien, M. Klimczak, and R. Buczynski, “Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers,” Opt. Mater. Express 7, 3471–3483 (2017).
    [Crossref]
  14. C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  15. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41, 3201–3204 (2016).
    [Crossref]
  16. B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8, 1341–1348 (2018).
    [Crossref]
  17. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref]
  18. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]
  19. J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004).
    [Crossref]
  20. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  21. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  22. A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40, 4687–4690 (2015).
    [Crossref]
  23. Y. Y. Wang, S. X. Dai, G. T. Li, D. Xu, C. Y. You, X. Han, P. Q. Zhang, X. S. Wang, and P. P. Xu, “1.4-7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
    [Crossref]
  24. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003).
    [Crossref]
  25. L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  26. A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
    [Crossref]
  27. G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
    [Crossref]
  28. T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
    [Crossref]
  29. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [Crossref]
  30. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
    [Crossref]
  31. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24, 2513–2526 (2016).
    [Crossref]
  32. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, and R. J. O. E. Wang, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23, 23472–23483 (2015).
    [Crossref]
  33. Y. Yuan, K. Xia, Y. Wang, Z. Liu, N. Zhang, J. Su, L. Jiang, P. Zhang, and S. Dai, “Precision fabrication of a four-hole Ge15Sb15Se70 chalcogenide suspended-core fiber for generation of a 1.5-12 µm ultrabroad mid-infrared supercontinuum,” Opt. Mater. Express 9, 2196–2205 (2019).
    [Crossref]
  34. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [Crossref]
  35. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [Crossref]
  36. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
    [Crossref]
  37. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]

2019 (2)

2018 (2)

2017 (4)

2016 (5)

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24, 2513–2526 (2016).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41, 3201–3204 (2016).
[Crossref]

2015 (4)

2014 (1)

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

2010 (4)

2008 (1)

2007 (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2004 (1)

2003 (2)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

2002 (3)

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abouraddy, A. F.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Agger, C.

Al-Kadry, A.

Apolonski, A.

Badding, J. V.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Ballato, J.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Bang, O.

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bizheva, K.

Bony, P. Y.

Boussard-Pledel, C.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Brilland, L.

Buczynski, R.

Bureau, B.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Caillaud, C.

Chen, F.

Chen, P.

Cheng, T. L.

Cimek, J.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Cordeiro, C. M. B.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Couris, S.

Cronin-Golomb, M.

Dai, S.

Dai, S. X.

Danto, S.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Deng, D. H.

Desevedavy, F.

Désévédavy, F.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Domachuk, P.

Drexler, W.

Duan, Z.

Duan, Z. C.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

Ebendorff-Heidepriem, H.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

El Amraoui, M.

El-Amraoui, M.

Engelsen, S. B.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Fatome, J.

Feehan, J. S.

Feng, X.

Fercher, A. F.

Feurer, T.

Finazzi, V.

Fink, Y.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Fortier, C.

Frosz, M. H.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

Gao, W.

Gao, W. Q.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Han, X.

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Heidt, A. M.

Hermann, B.

Hewak, D.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hooper, L. E.

Hu, M. L.

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Huang, Y.

Huang, Y. L.

Jia, Z. X.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Jiang, L.

Jules, J. C.

Kawashima, H.

Keiding, S. R.

Kibler, B.

Klimczak, M.

Knight, J. C.

Kohoutek, T.

Kubat, I.

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24, 2513–2526 (2016).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Li, G. T.

Li, L.

Li, Q.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Liao, M.

Liao, M. S.

Liaros, N.

Liu, L.

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

Liu, Z.

Liu, Z. J.

Lucas, J.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Luo, B.

Luther-Davies, B.

Matsumoto, M.

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

Mechin, D.

Messaddeq, Y.

Mi, N.

Moller, U.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monro, T. M.

Mosley, P. J.

Mouawad, O.

Muir, A. C.

Nagasaka, K.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Nie, Q. H.

North, T.

Ohishi, Y.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37, 2127–2129 (2012).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

Omenetto, F. G.

Ou, H.

Peng, X. F.

Petersen, C.

Petersen, C. R.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Petropoulos, P.

Polacchini, C. F.

Povazay, B.

Price, J. H. V.

Qin, G. S.

Qin, W. P.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Renversez, G.

Ringsted, T.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Rochette, M.

Russell, P. St. J.

Sattmann, H.

Savelii, I.

Scherzer, E.

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seddon, A. B.

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).
[Crossref]

Shen, X.

Siesler, H. W.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Skripatchev, I.

Smektala, F.

Stepien, R.

Stolyarov, A. M.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Su, J.

Su, J. X.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sun, Y.

Suzuki, T.

Szpulak, M.

Tang, Z. Q.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, G. M.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Tezuka, H.

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

Thogersen, J.

Tian, Y. M.

Tong, H. T.

Troles, J.

Tuan, T. H.

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wang, A.

Wang, R.

Wang, R. J. O. E.

Wang, R. P.

Wang, X.

Wang, X. S.

Wang, Y.

Wang, Y. Y.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wolchover, N. A.

Wu, B.

Wu, Y.

Xia, K.

Xu, D.

Xu, H.

Xu, P. P.

Xu, Y.

Xue, X. J.

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

Xue, Z. G.

Yan, X.

Yang, P. L.

Yao, C. F.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation,” J. Lightwave Technol. 36, 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

You, C. Y.

Yu, Y.

Yuan, Y.

Zhang, N.

Zhang, P.

Zhang, P. Q.

Zhang, Y.

Zhao, Z. M.

Zhao, Z. P.

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Zhou, B. B.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796–3800 (2007).
[Crossref]

Adv. Opt. Photonics (1)

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379–458 (2015).
[Crossref]

Appl. Phys. Express (1)

T. L. Cheng, T. H. Tuan, L. Liu, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2-As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9, 022502 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109, 17–21 (2016).

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).
[Crossref]

J. Cereal Sci. (1)

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Express (14)

N. Zhang, X. F. Peng, Y. Y. Wang, S. X. Dai, Y. Yuan, J. X. Su, G. T. Li, P. Q. Zhang, P. L. Yang, and X. S. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27, 10311–10319 (2019).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24, 2513–2526 (2016).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, and R. J. O. E. Wang, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23, 23472–23483 (2015).
[Crossref]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

Opt. Lett. (7)

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37, 2127–2129 (2012).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40, 4687–4690 (2015).
[Crossref]

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41, 3201–3204 (2016).
[Crossref]

Y. Y. Wang, S. X. Dai, G. T. Li, D. Xu, C. Y. You, X. Han, P. Q. Zhang, X. S. Wang, and P. P. Xu, “1.4-7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Four-hole ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}}$ MOF preform. (b) Cross section of the MOF preform. (c) Elongated ${{\rm As}_2}{{\rm S}_3}$ glass rods. (d) ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}} {-} {{\rm As}_2}{{\rm S}_3}$ AS-MOF preform.
Fig. 2.
Fig. 2. (a) Measured refractive index of ${{\rm As}_2}{{\rm S}_3}$ and ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}}$ glasses. (b) Calculated material dispersion of ${{\rm As}_2}{{\rm S}_3}$ and ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}}$ glasses and FM dispersion characteristic curves of AS-MOFs with various core diameters.
Fig. 3.
Fig. 3. (a) Simulated geometric model of AS-MOF. (b) LP01 mode. (c) LP11 mode. (d) LP21 mode.
Fig. 4.
Fig. 4. (a) Cross section of fabricated ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}} {-} {{\rm As}_2}{{\rm S}_3}$ AS-MOF and refractive index profile along the $x$ axis. (b) Transmission and confinement loss of purified and unpurified AS-MOF.
Fig. 5.
Fig. 5. (a) Measured and simulated SC spectral generated from ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}} {-} {{\rm As}_2}{{\rm S}_3}$ AS-MOF with different pumping wavelengths of 5, 6, and 7 µm. (b) Measured SC spectra pumped at 5 µm with increasing pump power.
Fig. 6.
Fig. 6. Calculated FM ${A_{{\rm eff}}}$ and $\gamma $ of AS-MOF with 9.8 µm core diameter.
Fig. 7.
Fig. 7. Simulated SC spectrum at 5 µm and its coherence property in Te-based AS-MOF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) 1 = i = 1 3 B i λ 2 λ 2 C i ,
γ = 2 π n 2 λ A e f f ,
| g 12 ( 1 ) ( λ , t 1 t 2 ) | = | E 1 ( λ , t 1 ) E 2 ( λ , t 2 ) | E 1 ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 | ,

Metrics