Abstract

We report simulations and experimental measurement of a photonic crystal (PhC) designed with different unit cell geometries in a single device. This “mix-and-match” approach enables enhanced mode manipulation by incorporating non-traditional unit cell shapes into a one-dimensional PhC nanobeam cavity. Inclusion of a bowtie-shaped unit cell in the center of a mix-and-match PhC nanobeam cavity comprised elsewhere of either circular or antislot unit cells leads to a 2 order of magnitude reduction in the mode volume of the cavity while maintaining a similar quality factor.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low mode volume on-substrate silicon nanobeam cavity

Jun Zhou, Jiajiu Zheng, Zhuoran Fang, Peipeng Xu, and Arka Majumdar
Opt. Express 27(21) 30692-30699 (2019)

Photonic crystal nanobeam cavities with optical resonances around 800  nm

I. Saber, R. Boddeda, F. Raineri, D. Sanchez, G. Beaudoin, I. Sagnes, Q. Glorieux, A. Bramati, J. A. Levenson, and K. Bencheikh
J. Opt. Soc. Am. B 36(7) 1823-1828 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
    [Crossref]
  2. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
    [Crossref]
  4. K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
    [Crossref]
  5. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007).
    [Crossref]
  6. W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
    [Crossref]
  7. S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photon. 3, 1647–1653 (2016).
    [Crossref]
  8. H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
    [Crossref]
  9. S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
    [Crossref]
  10. P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, and T. Stöferle, “Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express 21, 32468–32483 (2013).
    [Crossref]
  11. S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.
  12. H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
    [Crossref]
  13. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [Crossref]
  14. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref]
  15. P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
    [Crossref]
  16. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
    [Crossref]
  17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref]
  19. S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
    [Crossref]
  20. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
    [Crossref]
  21. M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
    [Crossref]
  22. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
    [Crossref]
  23. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
    [Crossref]
  24. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]

2019 (1)

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

2018 (2)

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
[Crossref]

2017 (2)

M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref]

2016 (1)

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photon. 3, 1647–1653 (2016).
[Crossref]

2015 (1)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

2013 (5)

2011 (3)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

2010 (2)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

2003 (1)

P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

2002 (1)

Afzal, F. O.

S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
[Crossref]

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Allen, J. A.

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Almeida, V. R.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Baehr-Jones, T.

Barrios, C. A.

Bhargava, S.

Chakravarty, S.

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

Chen, R. T.

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

Choi, H.

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Drechsler, U.

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Engelmann, S.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Englund, D.

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref]

Fan, S.

Fauchet, P. M.

Fu, Z.

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Galland, C.

Gerace, D.

M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
[Crossref]

Green, W. M. J.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Guo, Y.

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

Halimi, S. I.

S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
[Crossref]

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Heuck, M.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref]

Hochberg, M.

Hofrichter, J.

Hu, S.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
[Crossref]

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photon. 3, 1647–1653 (2016).
[Crossref]

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Hugonin, J. P.

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
[Crossref]

P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

Hwang, Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Ibanescu, M.

Ippen, E.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Jeong, K.-Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Joannopoulos, J. D.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Khater, M.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Kim, K. S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Kratschmer, E.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lai, W.-C.

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

Lalanne, P.

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
[Crossref]

P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

Lalau-Keraly, C. M.

Lecamp, G.

Lee, M. R.

Lee, Y.-H.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Lim, A. E.-J.

Lipson, M.

Lister, K.

Lo, G.-Q.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Miller, O. D.

Minkov, M.

M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
[Crossref]

No, Y.-S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Park, H.-G.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Salas-Montiel, R.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Sauvan, C.

Savona, V.

M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
[Crossref]

Seidler, P.

Seo, M.-K.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Soljacic, M.

Stöferle, T.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Weiss, S. M.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, “Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide,” Opt. Lett. 43, 4260–4263 (2018).
[Crossref]

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photon. 3, 1647–1653 (2016).
[Crossref]

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Xu, Q.

Yablonovitch, E.

Yang, S.

Yoon, Y.

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

Zhang, Y.

Zhu, D.

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

Zou, Y.

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

ACS Photon. (1)

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photon. 3, 1647–1653 (2016).
[Crossref]

Appl. Phys. Lett. (3)

W.-C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102, 041111 (2013).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

M. Minkov, V. Savona, and D. Gerace, “Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling,” Appl. Phys. Lett. 111, 131104 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Nat. Commun. (1)

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Nat. Photonics (3)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vucković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Cascaded cavities boost the indistinguishability of imperfect quantum emitters,” Phys. Rev. Lett. 122, 183602 (2019).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref]

Sci. Adv. (1)

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4, eaat2355 (2018).
[Crossref]

Other (2)

S. I. Halimi, Z. Fu, F. O. Afzal, J. A. Allen, S. Hu, and S. M. Weiss, “Photonic crystal design with mix and match unit cells for mode manipulation,” in Conference on Lasers and Electro-Optics (OSA, 2019), paper SM2J.4.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic illustration of (a) a 1D PhC composed of bowtie unit cells, (b) a mix-and-match PhC with a single bowtie unit cell at the center of the cavity, surrounded by circular air hole unit cells forming the mirrors, and (c) a mix-and-match PhC with bowtie cavity unit cell and antislot mirror unit cells.
Fig. 2.
Fig. 2. Simulated 3D-FDTD parameter sweep of bowtie radius and unit cell width in (a)–(b) air hole–bowtie and (c)–(d) antislot-bowtie PhC nanobeams, showing how quality factor and resonant wavelength vary for each combination of parameters. (e) Simulated mode profile of the optimized antislot-bowtie mix-and-match PhC design.
Fig. 3.
Fig. 3. Gradient optimization illustrated with the parameter spaces simulated in Figs. 2(a) and 2(c) starting from bowtie unit cell dimensions of the same radius and unit cell width as the uniform PhC cavity designs. Optimization of calculated $ Q $ for (a) the air hole–bowtie PhC nanobeam with initial bowtie radius of 93 nm and unit cell width of 400 nm, requiring 5 iterations, and (b) the antislot-bowtie PhC nanobeam with initial bowtie radius of 160 nm and unit cell width of 450 nm, requiring 2 iterations. The initial point is indicated in red, and the converged solution is indicated in blue.
Fig. 4.
Fig. 4. (a) SEM image of fabricated mix-and-match PhC with a single bowtie unit cell in the center of a 1D PhC composed of antislot unit cells. (b) Transmission measurement of mix-and-match PhC with a loaded ${Q}\sim 4 \times {{10}^3}$.

Tables (1)

Tables Icon

Table 1. Simulated Q and V m for Mixed Unit Cell PhC Designs

Metrics