Abstract

In this work, we discovered the possibility of greatly relaxing requirements to the speed and dynamic range of pump power variation and, thus, of reducing synchronous pumping of ytterbium (Yb)-based fiber lasers to a very simple pump modulation yielding a mode-locked pulsed output. We show that even slow (microsecond-scale) low-index ($\le\! {0.5}$) sine-wave synchronous modulation of the pump power can result in shaping of a regular train of nanosecond laser pulses. It is revealed that the energy-conservative process of laser pulse shortening against the pump modulation period can take place in the quasi–two-level laser active medium owing to mistiming-induced gain discrimination of the temporal laser pulse profile. Thus, nanosecond pulses with energy up to 50 nJ were obtained in our experimental all-fiber Yb-based laser configuration. Our theoretical modeling reveals routes to much stronger pulse shortening through tunable pump modulation parameters. This discovery allows the establishment of more reliable and easy-to-implement high-efficiency alternatives to other types of high-energy ultralong mode-locked fiber lasers.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Square nanosecond mode-locked Er-fiber laser synchronized to a picosecond Yb-fiber laser

Yao Li, Xiaorong Gu, Ming Yan, E Wu, and Heping Zeng
Opt. Express 17(6) 4526-4532 (2009)

Flexible rectangular wave-breaking-free pulse generation in actively mode-locked ytterbium-doped fiber laser

He Chen, Sheng-Ping Chen, Zong-Fu Jiang, and Jing Hou
Opt. Express 22(22) 26449-26456 (2014)

Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and D. G. Fursa
J. Opt. Soc. Am. B 7(2) 172-181 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription