Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Collective lattice resonances in disordered and quasi-random all-dielectric metasurfaces

Not Accessible

Your library or personal account may give you access

Abstract

Collective lattice resonances in disordered 2D arrays of spherical Si nanoparticles (NPs) have been thoroughly studied within the framework of the coupled dipole approximation. Three types of defects have been analyzed: positional disorder, size disorder, and quasi-random disorder. We show that the positional disorder strongly suppresses either the electric dipole (ED) or the magnetic dipole (MD) coupling, depending on the axis along which the NPs are shifted. Contrarily, size disorder strongly affects only the MD response, while the ED resonance can be almost intact, depending on the lattice configuration. Finally, random removing of NPs from an ordered 2D lattice reveals a quite surprising result: hybridization of the ED and MD resonances with lattice modes remains observable even in the case of random removing of up to 84% of the NPs from the ordered array. The reported results could be important for rational design and utilization of metasurfaces, solar cells, and other all-dielectric photonic devices.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size

V. I. Zakomirnyi, A. E. Ershov, V. S. Gerasimov, S. V. Karpov, H. Ågren, and I. L. Rasskazov
Opt. Lett. 44(23) 5743-5746 (2019)

Dielectric metasurfaces based on a rectangular lattice of a-Si:H nanodisks for color pixels with high saturation and stability

Hongliang Li, Song Gao, Yang Li, Chunwei Zhang, and Wenjing Yue
Opt. Express 27(24) 35027-35040 (2019)

Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]

Viktoriia E. Babicheva, Mihail I. Petrov, Kseniia V. Baryshnikova, and Pavel A. Belov
J. Opt. Soc. Am. B 34(7) D18-D28 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved