Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plasmon nanolasing with aluminum nanoparticle arrays [Invited]

Abstract

This paper compares plasmon nanolasing and corresponding ultrafast dynamics supported by Al and Au nanoparticle arrays. By tuning nanoparticle size, we achieved high-quality surface lattice resonances from both dipolar lattice plasmons and hybrid quadrupolar lattice plasmons at near-infrared wavelengths. We demonstrated that the dipolar and hybrid quadrupolar lattice modes can serve as optical feedback for plasmonic nanolasing. Even at the wavelength of its interband transition, Al showed nanolasing properties similar to Au. Also, independent of the type of cavity mode used as optical feedback, Al lattice plasmon lasing showed thresholds and ultrafast dynamics similar to Au.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays

Dmitry Khlopin, Frédéric Laux, William P. Wardley, Jérôme Martin, Gregory A. Wurtz, Jérôme Plain, Nicolas Bonod, Anatoly V. Zayats, Wayne Dickson, and Davy Gérard
J. Opt. Soc. Am. B 34(3) 691-700 (2017)

Plasmonic nanolaser based on a single oligomer

Igor A Litvin and Stephanie Reich
Opt. Express 30(23) 41399-41407 (2022)

Necessary conditions for out-of-plane lattice plasmons in nanoparticle arrays

Gordon Han Ying Li and Guangyuan Li
J. Opt. Soc. Am. B 36(4) 805-810 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved