Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
Y. Zhou, D. Fan, S. Fan, Y. Chen, and G. Liu, “Laser scanning by rotating
polarization gratings,” Appl. Opt. 55, 5149–5157 (2016).
[Crossref]
J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam
steering based on polymer polarization gratings: design optimization
and demonstration,” J. Lightwave
Technol. 33, 2068–2077 (2015).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
C. Oh and M. J. Escuti, “Achromatic diffraction from
polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on
circular-polarization holography in an azobenzene side-chain
liquid-crystalline polymer,” Appl.
Opt. 47, 93–98 (2008).
[Crossref]
C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid
crystal based diffraction grating induced by polarization holograms at
the aligning surfaces,” Appl. Phys.
Lett. 89, 121105 (2006).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
M. Honmaand and T. Nose, “Polarization-independent
liquid crystal grating fabricated by microrubbing
process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]
R. W. Batterman, “Falling cats, parallel
parking, and polarized light,” Stud. Hist.
Philos. Sci. B 34, 527–557 (2003).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
R. Bhandari, “Polarization of light and
topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
J. Anandan, “The geometric
phase,” Nature 360, 307–313 (1992).
[Crossref]
L. Nikolova and T. Todorov, “Diffraction efficiency and
selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]
M. V. Berry, “Quantal phase factors
accompanying adiabatic changes,” Proc. R. Soc.
London A 392, 45–57 (1984).
[Crossref]
T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material
with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]
S. Pancharatnam, “Generalized theory of
interference, and its applications,” Proc.
Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]
J. Anandan, “The geometric
phase,” Nature 360, 307–313 (1992).
[Crossref]
R. W. Batterman, “Falling cats, parallel
parking, and polarized light,” Stud. Hist.
Philos. Sci. B 34, 527–557 (2003).
[Crossref]
M. V. Berry, “Quantal phase factors
accompanying adiabatic changes,” Proc. R. Soc.
London A 392, 45–57 (1984).
[Crossref]
R. Bhandari, “Polarization of light and
topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid
crystal based diffraction grating induced by polarization holograms at
the aligning surfaces,” Appl. Phys.
Lett. 89, 121105 (2006).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam
steering based on polymer polarization gratings: design optimization
and demonstration,” J. Lightwave
Technol. 33, 2068–2077 (2015).
[Crossref]
M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex
liquid crystal patterns,” Opt.
Express 22, 12691–12706 (2014).
[Crossref]
R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders:
broadband retardation control using self-aligning reactive liquid
crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical
beam steering with high-throughput utilizing polarization
gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
C. Oh and M. J. Escuti, “Achromatic diffraction from
polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
M. J. Escuti, “Methods of fabricating liquid
crystal polarization gratings on substrates and related
devices,” U.S. patent8,358,400 (January22, 2013).
M. J. Escuti, “Methods of fabricating liquid
crystal polarization gratings on substrates and related
devices,” U.S. patent application 60/912,036 (April16, 2007).
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
M. Honmaand and T. Nose, “Polarization-independent
liquid crystal grating fabricated by microrubbing
process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam
steering based on polymer polarization gratings: design optimization
and demonstration,” J. Lightwave
Technol. 33, 2068–2077 (2015).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical
beam steering with high-throughput utilizing polarization
gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically
imprinted polarization gratings,” Appl.
Opt. 48, 4062–4067 (2009).
[Crossref]
N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high
efficiency, high quality, large area diffractive waveplates and
arrays,” U.S. patent application 13/860,934 (April11, 2013).
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders:
broadband retardation control using self-aligning reactive liquid
crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam
steering based on polymer polarization gratings: design optimization
and demonstration,” J. Lightwave
Technol. 33, 2068–2077 (2015).
[Crossref]
M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex
liquid crystal patterns,” Opt.
Express 22, 12691–12706 (2014).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically
imprinted polarization gratings,” Appl.
Opt. 48, 4062–4067 (2009).
[Crossref]
N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high
efficiency, high quality, large area diffractive waveplates and
arrays,” U.S. patent application 13/860,934 (April11, 2013).
L. Nikolova and T. Todorov, “Diffraction efficiency and
selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]
T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material
with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
M. Honmaand and T. Nose, “Polarization-independent
liquid crystal grating fabricated by microrubbing
process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical
beam steering with high-throughput utilizing polarization
gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
C. Oh and M. J. Escuti, “Achromatic diffraction from
polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]
C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid
crystal based diffraction grating induced by polarization holograms at
the aligning surfaces,” Appl. Phys.
Lett. 89, 121105 (2006).
[Crossref]
S. Pancharatnam, “Generalized theory of
interference, and its applications,” Proc.
Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid
crystal based diffraction grating induced by polarization holograms at
the aligning surfaces,” Appl. Phys.
Lett. 89, 121105 (2006).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam
steering based on polymer polarization gratings: design optimization
and demonstration,” J. Lightwave
Technol. 33, 2068–2077 (2015).
[Crossref]
J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical
beam steering with high-throughput utilizing polarization
gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically
imprinted polarization gratings,” Appl.
Opt. 48, 4062–4067 (2009).
[Crossref]
N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high
efficiency, high quality, large area diffractive waveplates and
arrays,” U.S. patent application 13/860,934 (April11, 2013).
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high
efficiency, high quality, large area diffractive waveplates and
arrays,” U.S. patent application 13/860,934 (April11, 2013).
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
L. Nikolova and T. Todorov, “Diffraction efficiency and
selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]
T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material
with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]
T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material
with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on
circular-polarization holography in an azobenzene side-chain
liquid-crystalline polymer,” Appl.
Opt. 47, 93–98 (2008).
[Crossref]
X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on
circular-polarization holography in an azobenzene side-chain
liquid-crystalline polymer,” Appl.
Opt. 47, 93–98 (2008).
[Crossref]
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and
high-throughput plasmonic photopatterning of complex molecular
orientations in liquid crystals,” Adv.
Mater. 28, 2353–2358 (2016).
[Crossref]
X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on
circular-polarization holography in an azobenzene side-chain
liquid-crystalline polymer,” Appl.
Opt. 47, 93–98 (2008).
[Crossref]
S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically
imprinted polarization gratings,” Appl.
Opt. 48, 4062–4067 (2009).
[Crossref]
J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical
beam steering with high-throughput utilizing polarization
gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]
Y. Zhou, D. Fan, S. Fan, Y. Chen, and G. Liu, “Laser scanning by rotating
polarization gratings,” Appl. Opt. 55, 5149–5157 (2016).
[Crossref]
J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz
transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]
C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid
crystal based diffraction grating induced by polarization holograms at
the aligning surfaces,” Appl. Phys.
Lett. 89, 121105 (2006).
[Crossref]
J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated
by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous
beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]
G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction
gratings using polarization holography alignment
techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]
M. Honmaand and T. Nose, “Polarization-independent
liquid crystal grating fabricated by microrubbing
process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]
J. Anandan, “The geometric
phase,” Nature 360, 307–313 (1992).
[Crossref]
L. Nikolova and T. Todorov, “Diffraction efficiency and
selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]
E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters
and optical switches based on space-variant computer-generated
subwavelength quasi-periodic structures,” Opt.
Commun. 209, 45–54 (2002).
[Crossref]
T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material
with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]
M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex
liquid crystal patterns,” Opt.
Express 22, 12691–12706 (2014).
[Crossref]
L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization
holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
[Crossref]
R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders:
broadband retardation control using self-aligning reactive liquid
crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref]
C. Oh and M. J. Escuti, “Achromatic diffraction from
polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]
Z. He, Y. Lee, R. Chen, D. Chanda, and S. T. Wu, “Switchable Pancharatnam–Berry
microlens array with nano-imprinted liquid crystal
alignment,” Opt. Lett. 43, 5062–5065 (2018).
[Crossref]
J. Tervo and J. Turunen, “Paraxial-domain diffractive
elements with 100% efficiency based on polarization
gratings,” Opt. Lett. 25, 785–786 (2000).
[Crossref]
P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar
optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]
J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal
geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]
R. Bhandari, “Polarization of light and
topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]
S. Pancharatnam, “Generalized theory of
interference, and its applications,” Proc.
Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]
M. V. Berry, “Quantal phase factors
accompanying adiabatic changes,” Proc. R. Soc.
London A 392, 45–57 (1984).
[Crossref]
J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam
steering using thin liquid crystal polarization
gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]
M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area
polarization grating fabrication,” Proc.
SPIE 8395, 83950G (2012).
[Crossref]
R. W. Batterman, “Falling cats, parallel
parking, and polarized light,” Stud. Hist.
Philos. Sci. B 34, 527–557 (2003).
[Crossref]
M. J. Escuti, “Methods of fabricating liquid
crystal polarization gratings on substrates and related
devices,” U.S. patent8,358,400 (January22, 2013).
N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high
efficiency, high quality, large area diffractive waveplates and
arrays,” U.S. patent application 13/860,934 (April11, 2013).
M. J. Escuti, “Methods of fabricating liquid
crystal polarization gratings on substrates and related
devices,” U.S. patent application 60/912,036 (April16, 2007).