Abstract

Here we study birefringent films with highly customizable chromatic retardation spectra, using multi-twist liquid crystal (LC) films. These are made of two or more layers of chiral nematic LC polymer network materials, also known as reactive mesogens, which form a monolithic thin-film wherein the in-plane orientation of subsequent layers is automatically determined by the single alignment layer on the substrate. The multiple layer thicknesses and twists present many degrees of freedom to tailor the retardation. While prior work examined achromatic spectra, here we show how to use Mueller matrix analysis to create highly chromatic spectra. We experimentally demonstrate both a uniformly aligned retarder as a green/magenta color filter and a “hot” polarization grating (PG) that diffracts infrared while passing visible light. The three-twist color filter shows a contrast ratio in transmittance between polarizers as high as 10:1 between the half- and zero-wave retardation bands. The “hot” PG shows an average first-order efficiency of about 90% for 1000–2700 nm and an average zero-order efficiency of about 90% for 500–900 nm. The principles here can be extended to nearly any chromatic retardation spectra, including high/low/bandpass, and to nearly any LC orientation pattern, in general known as geometric-phase holograms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers

Ravi K. Komanduri, Kristopher F. Lawler, and Michael J. Escuti
Opt. Express 21(1) 404-420 (2013)

Retardation-film-compensated reflective bistable twisted nematic liquid-crystal displays

Jian-Xin Guo and Xiao-Wei Sun
Appl. Opt. 42(19) 3853-3863 (2003)

Multi-color holography with a two-stage patterned liquid-crystal element

David S. Doelman, Michael J. Escuti, and Frans Snik
Opt. Mater. Express 9(3) 1246-1256 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Bhowmik, Z. Li, and P. J. Bos, eds., Mobile Displays: Technology and Applications (Wiley, 2008).
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref]
  3. S. Pancharatnam, “Achromatic combinations of birefringent plates—Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
    [Crossref]
  4. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965).
    [Crossref]
  5. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–145 (1958).
    [Crossref]
  6. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
    [Crossref]
  7. S. E. Harris, E. O. Ammann, and I. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. 54, 1267–1279 (1964).
    [Crossref]
  8. G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
    [Crossref]
  9. G. Sharp, “Retarder stacks for polarizing a first color spectrum along a first axis and a second color spectrum along a second axis,” U.S. patent5,953,083 (Sept. 14, 1999).
  10. J. W. Evans, “A birefringent monochromator for isolating high orders in grating spectra,” Appl. Opt. 2, 193–197 (1963).
    [Crossref]
  11. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
    [Crossref]
  12. R. Komanduri, K. Lawler, and M. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
    [Crossref]
  13. N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Y. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24, 7091–7102 (2016).
    [Crossref]
  14. G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
    [Crossref]
  15. S. T. Tang and H. S. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys. 89, 5288–5294 (2001).
    [Crossref]
  16. R. A. Chipman, “Ch. 22 polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. II, pp. 22.1–22.37.
  17. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
    [Crossref]
  18. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
    [Crossref]
  19. C. Yousefzadeh, A. Jamali, C. McGinty, and P. J. Bos, “‘Achromatic limits’ of Pancharatnam phase lenses,” Appl. Opt. 57, 1151–1158 (2018).
    [Crossref]
  20. S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
    [Crossref]
  21. K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
    [Crossref]
  22. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [Crossref]
  23. M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
    [Crossref]
  24. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [Crossref]
  25. M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54, 025101 (2015).
    [Crossref]
  26. X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
    [Crossref]
  27. T. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20, 3271–3273 (1981).
    [Crossref]

2018 (1)

2017 (2)

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (1)

K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
[Crossref]

2013 (1)

2010 (1)

2009 (1)

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

2008 (1)

2006 (3)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref]

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

2002 (1)

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

2001 (1)

S. T. Tang and H. S. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys. 89, 5288–5294 (2001).
[Crossref]

1996 (1)

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

1981 (1)

1965 (1)

1964 (1)

1963 (1)

1958 (1)

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates—Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
[Crossref]

Ammann, E. O.

Bastiaansen, C.

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Birge, J.

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

Bos, P. J.

Brickson, L. L.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Broer, D.

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Chang, I. C.

Chen, J.

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

Chenault, D. B.

Chipman, R. A.

R. A. Chipman, “Ch. 22 polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. II, pp. 22.1–22.37.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Close, L. M.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Codona, J. L.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Escuti, M.

Escuti, M. J.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54, 025101 (2015).
[Crossref]

K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Evans, J. W.

Fletcher-Holmes, D. W.

Gaylord, T.

Goldstein, D. L.

Gorman, A.

Harris, S. E.

Harvey, A. R.

Hinz, P. M.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Hornburg, K. J.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
[Crossref]

Jamali, A.

Keller, C. U.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Kenworthy, M. A.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Kim, J.

Kimball, B.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

Kimball, B. R.

Komanduri, R.

Komanduri, R. K.

K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
[Crossref]

Kudenov, M. W.

Kwok, H. S.

S. T. Tang and H. S. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys. 89, 5288–5294 (2001).
[Crossref]

Lawler, K.

Li, Y.

Males, J. R.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

McGinty, C.

Miskiewicz, M. N.

Moharam, M. G.

Morzinski, K. M.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Nersisyan, S.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

Nersisyan, S. R.

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Oh, C.

Otten, G. P. P. L.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates—Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
[Crossref]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Roberts, D. E.

Robinson, M.

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

Sánchez, C.

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Serak, S. V.

Sharp, G.

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

G. Sharp, “Retarder stacks for polarizing a first color spectrum along a first axis and a second color spectrum along a second axis,” U.S. patent5,953,083 (Sept. 14, 1999).

Shaw, J. A.

Snik, F.

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Šolc, I.

Steeves, D.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

Steeves, D. M.

Tabiryan, N.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

Tabiryan, N. V.

Tang, S. T.

S. T. Tang and H. S. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys. 89, 5288–5294 (2001).
[Crossref]

Thelen, A.

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Tyo, J. S.

Xiang, X.

Yousefzadeh, C.

Zeldovich, B. Y.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Astrophys. J. (1)

G. P. P. L. Otten, F. Snik, M. A. Kenworthy, C. U. Keller, J. R. Males, K. M. Morzinski, L. M. Close, J. L. Codona, P. M. Hinz, K. J. Hornburg, L. L. Brickson, and M. J. Escuti, “On-sky performance analysis of the vector apodizing phase plate coronagraph on MagAO/Clio2,” Astrophys. J. 834, 175 (2017).
[Crossref]

Displays (1)

G. Sharp, M. Robinson, J. Chen, and J. Birge, “LCoS projection color management using retarder stack technology,” Displays 23, 139–144 (2002).
[Crossref]

J. Appl. Phys. (1)

S. T. Tang and H. S. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys. 89, 5288–5294 (2001).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[Crossref]

J. Opt. Soc. Am. (3)

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Opt. Eng. (1)

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54, 025101 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Proc. Indian Acad. Sci. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates—Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
[Crossref]

Proc. SPIE (2)

M. J. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

K. J. Hornburg, R. K. Komanduri, and M. J. Escuti, “Multiband retardation control using multi-twist retarders,” Proc. SPIE 9099, 90990Z (2014).
[Crossref]

Other (3)

R. A. Chipman, “Ch. 22 polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. II, pp. 22.1–22.37.

G. Sharp, “Retarder stacks for polarizing a first color spectrum along a first axis and a second color spectrum along a second axis,” U.S. patent5,953,083 (Sept. 14, 1999).

A. K. Bhowmik, Z. Li, and P. J. Bos, eds., Mobile Displays: Technology and Applications (Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Example 1: structure and ideal optical behavior of an MTR with a chromatic retardation that provides half-wave retardation for green (G) light but zero-wave retardation for red (R) and blue (B). This allows G light to pass through crossed polarizers while blocking R and B.
Fig. 2.
Fig. 2. Fabricated Example 1 MTR between (a) crossed and (b) parallel polarizers.
Fig. 3.
Fig. 3. Transmittance spectra for Example 1 retarder (green/magenta color filter), between (a) crossed and (b) parallel linear polarizers. The design S o ( λ ) (black solid lines), measured (circles), and best-fit (dashed lines) spectra are shown, along with the edges of the wavelength bands used as the target.
Fig. 4.
Fig. 4. Example 2: structure and ideal optical behavior of a “hot” PG that diffracts IR and passes VIS light. This corresponds to high first-order efficiency η ± 1 in IR (black arrows) and high zero-order efficiency η 0 for VIS (red and green arrows).
Fig. 5.
Fig. 5. Diffraction efficiency spectra for Example 2 “hot” PG that diffracts IR light strongly while transmitting nearly all VIS light. The zero-order efficiency η 0 ( λ ) of the design (black solid lines) and the measured (circles) and best-fit (dashed blue line) spectra are shown, as well as the estimated total first-order η ± 1 ( λ ) efficiency (dashed red line) based on the best fit.
Fig. 6.
Fig. 6. Fabricated Example 2 “hot” PG. (a) When incident light is within the IR band, the PG diffracts strongly, and (b) when incident light is within the VIS band, the PG directly transmits nearly all the light. The photograph in part (a) is taken by arranging the 1550 nm light output from the PG onto a phosphorescent IR viewing card, which appears red, while the photograph in part (b) is merely the 635 nm light arranged onto a white screen.
Fig. 7.
Fig. 7. Simulating transmission of three different MT retarders (i.e., color filters) between crossed linear polarizers, (a) red/cyan, (b) green/magenta, and (c) blue/yellow. In (a)–(c), the target spectra (solid colored lines) and optimal solutions for two- (dashed), three- (solid), and four-twist (dot-dashed) cases are shown. Part (d) shows the rms of the difference between the target and corresponding optimal solution.

Tables (3)

Tables Icon

Table 1. Green/Magenta Color Filter Retarder (Example 1) Design and Experimental Result

Tables Icon

Table 2. “Hot” Polarization Grating (Example 2) Design and Experimental Result

Tables Icon

Table 3. Optimal Solutions for the MTR Color Filters of Fig. 7

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) [ 1 , 1 , 0 , 0 ] T = S o ( λ ) = P V T MTR ( λ ) P H S i ,
η 0 ( λ ) [ 1 , 0 , 0 , 0 ] T = S o ( λ ) = ( P R T MTR ( λ ) P R + P L T MTR ( λ ) P L ) S i ,

Metrics