Abstract

A plasmonic metasurface comprised of a single-layer silver bow-tie antenna array is presented for unconventional photolithography below the diffraction limit. The proposed structure can be fabricated by self-assembling a mask of dielectric spheres on top of a photoresist layer, followed by metal deposition and removal of the spheres. The nanoantennas can focus light to expose the photoresist in a similar way as it occurs in multi-photon lithography. The intensity distribution in the photoresist is calculated by solving Maxwell’s equations, and then resist dissolution models are applied to predict the clearance profile after development. Several exposure conditions with different metasurface parameters are investigated. The simulations can provide the size of the nanospheres, the thickness of the metallic bow-tie antennas and of the photoresist, and the optimum wavelength of the illumination, and they can present guidelines for the development conditions to obtain an array of holes arranged in a honeycomb lattice. It is shown that other geometries can be obtained as well by precise control of the process conditions.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas

Georg Kunkemöller, Tobias W. W. Maß, Ann-Katrin U. Michel, Hyun-Su Kim, Sascha Brose, Serhiy Danylyuk, Thomas Taubner, and Larissa Juschkin
Opt. Express 23(20) 25487-25495 (2015)

Broadband gold nanoantennas arrays with transverse dimension effects

Chen-Wei Su and Kuo-Ping Chen
Opt. Express 24(16) 17760-17765 (2016)

Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point

Romain Blanchard, Svetlana V. Boriskina, Patrice Genevet, Mikhail A. Kats, Jean-Philippe Tetienne, Nanfang Yu, Marlan O. Scully, Luca Dal Negro, and Federico Capasso
Opt. Express 19(22) 22113-22124 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Schodek, P. Ferreira, and M. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Elsevier, 2009).
  2. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
    [Crossref]
  3. H. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377–379 (1982).
    [Crossref]
  4. W. Y. Fu and H. W. Choi, “Nanosphere lithography for nitride semiconductors,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 30.
  5. Y. Ye and Z. Gang, “Colloidal lithography,” in Updates in Advanced Lithography, S. Hosaka, ed. (IntechOpen, 2013), chap. 1.
  6. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).
  7. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [Crossref]
  8. C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
    [Crossref]
  9. M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
    [Crossref]
  10. V. M. Murukeshan, K. V. Sreekanth, and J. K. Chua, “Metal particle-surface system for plasmonic lithography,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 29.
  11. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  12. M. Pelton and W. G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).
  13. A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
    [Crossref]
  14. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [Crossref]
  15. R. D. Nevels and H. T. Abbas, Optical Nanoantennas (Springer, 2016), pp. 527–566.
  16. J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
    [Crossref]
  17. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
    [Crossref]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  19. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [Crossref]
  20. Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
    [Crossref]
  21. M. Giloan and S. Astilean, “Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms,” Opt. Commun. 285, 1533–1541 (2012).
    [Crossref]
  22. K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
    [Crossref]
  23. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
    [Crossref]
  24. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
    [Crossref]
  25. N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
    [Crossref]
  26. J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
    [Crossref]
  27. P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
    [Crossref]
  28. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
    [Crossref]
  29. “CST—Microwave Studio,” https://www.cst.com .
  30. “SOPRA database,” https://www.sspectra.com .
  31. Zs. Szabó, Y. Kiasat, and E. P. Li, “Subwavelength imaging with composite metamaterials,” J. Opt. Soc. Am. B 31, 1298–1307 (2014).
    [Crossref]
  32. Zs. Szabó, “Closed form Kramers–Kronig relations to extract the refractive index of metamaterials,” IEEE Trans. Microw. Theory Tech. 65, 1150–1159 (2017).
    [Crossref]
  33. J. Chen, F. Gou, and Z. Zhang, “Breaking the axial symmetry of plasmonic nanoantennas,” in Frontiers in Optics (Optical Society of America, 2013), p. FTu5D.3.
  34. N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
    [Crossref]
  35. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [Crossref]
  36. “Microchemicals,” https://www.microchemicals.com .
  37. “MicroChem,” http://microchem.com/ .
  38. M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
    [Crossref]
  39. D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
    [Crossref]
  40. R. Patton, “Optimization of direct-write 3d two photon photolithography in poly (methyl methacrylate),” Ph.D. thesis (Ohio State University, 2015).
  41. J. S. Greeneich, “Time evolution of developed contours in poly-(methyl methacrylate) electron resist,” J. Appl. Phys. 45, 5264–5268 (1974).
    [Crossref]
  42. I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
    [Crossref]
  43. M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
    [Crossref]

2018 (1)

J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
[Crossref]

2017 (3)

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
[Crossref]

Zs. Szabó, “Closed form Kramers–Kronig relations to extract the refractive index of metamaterials,” IEEE Trans. Microw. Theory Tech. 65, 1150–1159 (2017).
[Crossref]

2016 (1)

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

2014 (3)

Zs. Szabó, Y. Kiasat, and E. P. Li, “Subwavelength imaging with composite metamaterials,” J. Opt. Soc. Am. B 31, 1298–1307 (2014).
[Crossref]

A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

2013 (1)

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

2012 (2)

M. Giloan and S. Astilean, “Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms,” Opt. Commun. 285, 1533–1541 (2012).
[Crossref]

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

2011 (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

2010 (1)

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

2009 (2)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2008 (3)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[Crossref]

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

2007 (2)

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

2006 (1)

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

2005 (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

2003 (1)

P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
[Crossref]

2002 (1)

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

2000 (1)

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[Crossref]

1982 (1)

H. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377–379 (1982).
[Crossref]

1974 (1)

J. S. Greeneich, “Time evolution of developed contours in poly-(methyl methacrylate) electron resist,” J. Appl. Phys. 45, 5264–5268 (1974).
[Crossref]

Abbas, H. T.

R. D. Nevels and H. T. Abbas, Optical Nanoantennas (Springer, 2016), pp. 527–566.

Adeyenuwo, A. P.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Aktary, M.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Alti, K.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Ashby, M.

D. Schodek, P. Ferreira, and M. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Elsevier, 2009).

Astilean, S.

M. Giloan and S. Astilean, “Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms,” Opt. Commun. 285, 1533–1541 (2012).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Bakkers, E. P. A. M.

J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
[Crossref]

Barry, T.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Bartl, J.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Bracher, G.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Brodehl, C.

C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
[Crossref]

Bryant, W. G.

M. Pelton and W. G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

Campbell, T.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Capolino, F.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Chen, J.

J. Chen, F. Gou, and Z. Zhang, “Breaking the axial symmetry of plasmonic nanoantennas,” in Frontiers in Optics (Optical Society of America, 2013), p. FTu5D.3.

Choi, H. W.

W. Y. Fu and H. W. Choi, “Nanosphere lithography for nitride semiconductors,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 30.

Choueiri, R. M.

A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
[Crossref]

Chua, J. K.

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

V. M. Murukeshan, K. V. Sreekanth, and J. K. Chua, “Metal particle-surface system for plasmonic lithography,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 29.

Clancy, E.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Deckman, H.

H. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377–379 (1982).
[Crossref]

Dew, S. K.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Ding, W.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Dunsmuir, J. H.

H. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377–379 (1982).
[Crossref]

Everett, T. A.

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Farahani, J. N.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Feng, L.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Ferreira, P.

D. Schodek, P. Ferreira, and M. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Elsevier, 2009).

Finley, J. J.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Fischer, H.

Fito, T.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Flückiger, P.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Forman, S. M.

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Fu, W. Y.

W. Y. Fu and H. W. Choi, “Nanosphere lithography for nitride semiconductors,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 30.

Gang, Z.

Y. Ye and Z. Gang, “Colloidal lithography,” in Updates in Advanced Lithography, S. Hosaka, ed. (IntechOpen, 2013), chap. 1.

Garnett, E. C.

J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
[Crossref]

Gasser, P.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Giersig, M.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

Giloan, M.

M. Giloan and S. Astilean, “Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms,” Opt. Commun. 285, 1533–1541 (2012).
[Crossref]

Glaczynska, H.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

Gou, F.

J. Chen, F. Gou, and Z. Zhang, “Breaking the axial symmetry of plasmonic nanoantennas,” in Frontiers in Optics (Optical Society of America, 2013), p. FTu5D.3.

Greeneich, J. S.

J. S. Greeneich, “Time evolution of developed contours in poly-(methyl methacrylate) electron resist,” J. Appl. Phys. 45, 5264–5268 (1974).
[Crossref]

Greulich-Weber, S.

C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
[Crossref]

Gubala, V.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Guo, M.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Hagouel, P. I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

Hanarp, P.

P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
[Crossref]

Hans-Jürgen, E.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Haverkort, J. E. M.

J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

Hecht, B.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Higgins, D. A.

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Huang, Y.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Hulteen, J. C.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[Crossref]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

Ito, T.

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Käll, M.

P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
[Crossref]

Kammerlocher, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kandulski, W.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

Kaniber, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Karafyllidis, I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Kazemi-Zanjani, N.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Khine, M.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Kiasat, Y.

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Klinkova, A.

A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
[Crossref]

Koshelev, K.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Kosiorek, A.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

Kumacheva, E.

A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
[Crossref]

Lagugné-Labarthet, F.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Le, N. C. H.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Li, E. P.

Li, Y.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Lin, Q.

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

Lindner, J. K. N.

C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
[Crossref]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

Martin, O. J. F.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

Merlen, A.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Murukeshan, M.

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

Murukeshan, V. M.

V. M. Murukeshan, K. V. Sreekanth, and J. K. Chua, “Metal particle-surface system for plasmonic lithography,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 29.

Neureuther, A.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

Nevels, R. D.

R. D. Nevels and H. T. Abbas, Optical Nanoantennas (Springer, 2016), pp. 527–566.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Patton, R.

R. Patton, “Optimization of direct-write 3d two photon photolithography in poly (methyl methacrylate),” Ph.D. thesis (Ohio State University, 2015).

Pavius, M.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Pelton, M.

M. Pelton and W. G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

Pohl, D. W.

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

Ragan, R.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Sanderson, R. N.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Sangar, A.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Schodek, D.

D. Schodek, P. Ferreira, and M. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Elsevier, 2009).

Schraml, K.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Sharac, N.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Sharma, H.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Smith, M. T.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

Smith, T. J.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Spiegl, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Sreekanth, K. V.

V. M. Murukeshan, K. V. Sreekanth, and J. K. Chua, “Metal particle-surface system for plasmonic lithography,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 29.

Stepanova, M.

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Sutherland, D. S.

P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
[Crossref]

Szabó, Zs.

Zs. Szabó, “Closed form Kramers–Kronig relations to extract the refractive index of metamaterials,” IEEE Trans. Microw. Theory Tech. 65, 1150–1159 (2017).
[Crossref]

Zs. Szabó, Y. Kiasat, and E. P. Li, “Subwavelength imaging with composite metamaterials,” J. Opt. Soc. Am. B 31, 1298–1307 (2014).
[Crossref]

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Tabatabaei, M.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Tan, S. K.

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

Thanailakis, A.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

Torchio, P.

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Vadakke,

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Veysi, M.

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Wang, S.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Williams, D. E.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

Xie, A.

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Ye, Y.

Y. Ye and Z. Gang, “Colloidal lithography,” in Updates in Advanced Lithography, S. Hosaka, ed. (IntechOpen, 2013), chap. 1.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Yun, F.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Zhang, Y.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Zhang, Z.

J. Chen, F. Gou, and Z. Zhang, “Breaking the axial symmetry of plasmonic nanoantennas,” in Frontiers in Optics (Optical Society of America, 2013), p. FTu5D.3.

Zhao, Y.

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Appl. Phys. Lett. (3)

H. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377–379 (1982).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

D. A. Higgins, T. A. Everett, A. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[Crossref]

Appl. Phys. Rev. (1)

J. E. M. Haverkort, E. C. Garnett, and E. P. A. M. Bakkers, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage,” Appl. Phys. Rev. 5, 031106 (2018).
[Crossref]

Biosens. Bioelectron. (1)

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36, 250–256 (2012).
[Crossref]

Chem. Soc. Rev. (1)

A. Klinkova, R. M. Choueiri, and E. Kumacheva, “Self-assembled plasmonic nanostructures,” Chem. Soc. Rev. 43, 3976–3991 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Zs. Szabó, “Closed form Kramers–Kronig relations to extract the refractive index of metamaterials,” IEEE Trans. Microw. Theory Tech. 65, 1150–1159 (2017).
[Crossref]

IEEE Trans. Semicond. Manuf. (1)

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[Crossref]

J. Appl. Phys. (1)

J. S. Greeneich, “Time evolution of developed contours in poly-(methyl methacrylate) electron resist,” J. Appl. Phys. 45, 5264–5268 (1974).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106, 1898–1902 (2002).
[Crossref]

P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107, 5768–5772 (2003).
[Crossref]

J. Phys. Chem. C (1)

M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Stepanova, T. Fito, Zs. Szabó, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,” J. Vac. Sci. Technol. B 28, C6C48–C6C57 (2010).
[Crossref]

Mater. Today (1)

C. Brodehl, S. Greulich-Weber, and J. K. N. Lindner, “Fabrication of tailored nanoantennas on large areas for plasmonic devices,” Mater. Today 4, S44–S51 (2017).
[Crossref]

Nanotechnology (3)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[Crossref]

J. N. Farahani, E. Hans-Jürgen, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[Crossref]

N. Sharac, H. Sharma, M. Veysi, R. N. Sanderson, M. Khine, F. Capolino, and R. Ragan, “Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates,” Nanotechnology 27, 105302 (2016).
[Crossref]

Nat. Photonics (3)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Nature (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Opt. Commun. (1)

M. Giloan and S. Astilean, “Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms,” Opt. Commun. 285, 1533–1541 (2012).
[Crossref]

Opt. Eng. (1)

M. Murukeshan, Vadakke, J. K. Chua, S. K. Tan, and Q. Lin, “Modeling of subwavelength resist grating features fabricated by evanescent waves interference,” Opt. Eng. 47, 47–49 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Phys. Rev. Lett. (1)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Sci. Rep. (1)

Y. Zhao, F. Yun, Y. Huang, S. Wang, L. Feng, Y. Li, M. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Small (1)

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 1, 439–444 (2005).
[Crossref]

Other (13)

“CST—Microwave Studio,” https://www.cst.com .

“SOPRA database,” https://www.sspectra.com .

R. D. Nevels and H. T. Abbas, Optical Nanoantennas (Springer, 2016), pp. 527–566.

“Microchemicals,” https://www.microchemicals.com .

“MicroChem,” http://microchem.com/ .

M. Pelton and W. G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

V. M. Murukeshan, K. V. Sreekanth, and J. K. Chua, “Metal particle-surface system for plasmonic lithography,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 29.

D. Schodek, P. Ferreira, and M. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Elsevier, 2009).

W. Y. Fu and H. W. Choi, “Nanosphere lithography for nitride semiconductors,” in Lithography, M. Wang, ed. (InTech, 2010), chap. 30.

Y. Ye and Z. Gang, “Colloidal lithography,” in Updates in Advanced Lithography, S. Hosaka, ed. (IntechOpen, 2013), chap. 1.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

J. Chen, F. Gou, and Z. Zhang, “Breaking the axial symmetry of plasmonic nanoantennas,” in Frontiers in Optics (Optical Society of America, 2013), p. FTu5D.3.

R. Patton, “Optimization of direct-write 3d two photon photolithography in poly (methyl methacrylate),” Ph.D. thesis (Ohio State University, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Setup of the unconventional plasmonic lithography with the metasurface composed of silver bow-tie nanoantennas on top of the photoresist supported by the glass substrate. (b) The construction of the simulation geometry. (c) The top view of the supercell used in the electromagnetic simulations. (d) The calculated transmission T, reflection R, and absorption A spectra; the maximum absorption occurs at the wavelength of 563 nm, which is a dipolar resonance.
Fig. 2.
Fig. 2. Averaged electric field at the wavelength of 563 nm, that is, the peak of the dipolar resonance, in different cutting planes of the unconventional lithography setup: (a) in the xy plane at the bottom of the photoresist layer and (b) in the xz plane at y=0, which passes through the gaps of two adjacent triangular nanoparticles.
Fig. 3.
Fig. 3. Absorption for different side lengths of the triangular arms that compose the nanoantennas. The absorption peaks of the dipolar mode are shown with the circle markers.
Fig. 4.
Fig. 4. Resonant wavelength of the dipolar mode as a function of the length of the bow-tie nanoantennas is plotted with circle markers. The linear regression of this dataset is plotted with a continuous blue line. The corresponding absorption values are plotted with asterisk markers.
Fig. 5.
Fig. 5. Averaged electric field distribution for a=50nm and 491.2 nm wavelength excitation at (a) the bottom of the photoresist and (b) in the xz plane at y=0. The averaged electric field distribution for a=175nm and 683.4 nm wavelength excitation (c) at the bottom of the photoresist and (d) in the xz plane at y=0. In (a), the extent of the near field is not sufficient to produce the required intensity contrast at the bottom of the photoresist. In (c), the electric field distribution suggests that the photoresist is properly exposed.
Fig. 6.
Fig. 6. Absorption curves corresponding to different nanoantenna thicknesses dAg. The absorption peaks corresponding to the dipolar mode are shown with the circle marks.
Fig. 7.
Fig. 7. Resonant wavelength of the dipolar mode as a function of the thicknesses dAg of the bow-tie antennas is plotted with circle markers and fitted with a fourth-order degree polynomial. The corresponding absorption values are plotted with asterisk markers; the linear regression is shown with a continuous red line.
Fig. 8.
Fig. 8. Averaged electric field in different cutting planes of the unconventional lithography setup. In the cases of (a) and (b), the thickness of the nanoantennas is dAg=5nm and the dipole mode resonance is at a wavelength of 764.4 nm. In the cases of (c) and (d), the thickness of the nanoantennas is dAg=30nm and the dipole mode resonance is at a wavelength of 535.8 nm.
Fig. 9.
Fig. 9. Absorption curves corresponding to different rounding radius rb of the triangular arms that compose the nanoantennas.
Fig. 10.
Fig. 10. Resonant wavelength of the dipolar mode as a function of the rounding radius rb of the triangular arms is plotted with circle markers and fitted with a quadratic polynomial. The corresponding absorption values are plotted with asterisk markers; the linear regression is shown with a continuous red line.
Fig. 11.
Fig. 11. (a) Averaged electric field at the bottom of the photoresist when the rounding radius is rb=2nm and the dipole mode resonates at a wavelength of 627.6 nm. (b) The rounding radius is rb=12nm and the dipole mode resonance is at a wavelength of 465.3 nm.
Fig. 12.
Fig. 12. Proportion of the remaining resist as a function of time as predicted by two different dissolution models.
Fig. 13.
Fig. 13. Development process of the photoresist exposed with the bow-tie antennas. The development profiles of different cross sections in the resist at instances 100 s and 200 s calculated (a) with clearance Model I and (b) with clearance Model II.
Fig. 14.
Fig. 14. Variation of the absorption peak as a function of the radius of the masking spheres (the proportionally of the supercell geometry is unchanged, and only the supercell size is modified) and all other parameters of the unconventional lithography setup are kept constant.
Fig. 15.
Fig. 15. Proportions of the remaining resist as a function of the development time calculated with Model II for different sizes of the masking spheres.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λresdip(a)=p1·a+p2,
λresdip(dAg)=p1·dAg4+p2·dAg3+p3·dAg2+p4·dAg+p5,
λresdip(rb)=p1·rb2+p2·rb+p3,
R(r)=(R0+βMfα(r))eEαkT,
Mf(r)=Mn1+gW(r)Mn/ρ,
τ(r)=r0rdrR(r),
Ci,j,kt=hdiss/a,
Ci,j,kt0+dt=Ci,j,kt0+dCadjdt+dCedgdt+dCvtxdt.
dCadjdt=γadjRi,j,kdta(Ci+1,j,kt0+Ci1,j,kt0+Ci,j+1,kt0+Ci,j1,kt0+Bi,j,k+1t0+Bi,j,k1t0),
dCedgdt=2γedgRi,j,k2t0dta2(Ci+1,j+1,kt0+Ci1,j+1,kt0+Ci+1,j1,kt0+Ci1,j1,kt0+Bi+1,j,k+1t0+Bi1,j,k+1t0+Bi,j+1,k+1t0+Bi,j1,k+1t0+Bi+1,j,k1t0+Bi1,j,k1t0+Bi,j+1,k1t0+Bi,j1,k1t0),
dCvtxdt=33γvtxRi,j,k3t02dt8a3(Bi+1,j+1,k+1t0+Bi1,j+1,k+1t0+Bi+1,j1,k+1t0+Bi1,j1,k+1t0+Bi+1,j+1,k1t0+Bi1,j+1,k1t0+Bi+1,j1,k1t0+Bi1,j1,k1t0),
BI,J,Kt0={1whenCI,J,Kt0=1,0otherwise.

Metrics