Abstract

A Gaussian laser beam tightly focused through a high-numerical-aperture objective lens, so-called optical tweezers, is widely used for piconewton-range force spectroscopy. Utilizing a proper value for parameters such as bead size, numerical aperture of the objective, and power of the laser is always a challenge. Here, we show which set of values for the parameters can maximize lateral trapping efficiency. Our results show that for a high-numerical-aperture force spectroscopy, a bead with a diameter of 4–5 µm is suitable, and that for manipulation using large beads, utilizing a proper value for laser power and numerical aperture of the objective is crucial. We present a practical method for choosing the power of the laser that maximizes lateral trapping efficiency.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of axial force of optical tweezers by utilizing a circular stop at the back focal plane of the objective

Hossein Gorjizadeh Alinezhad, Sajad Meydanloo, and S. Nader S. Reihani
J. Opt. Soc. Am. B 35(11) 2654-2660 (2018)

Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers

Mohammed Mahamdeh, Citlali Pérez Campos, and Erik Schäffer
Opt. Express 19(12) 11759-11768 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription